File size: 7,720 Bytes
d28c36c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
{
  "evaluation_info": {
    "title": "Comprehensive MCP Capability Evaluation - 14 Models",
    "date": "2025-10-05",
    "total_models": 14,
    "framework": "llama-cpp-python 0.3.16",
    "test_scenarios": 3,
    "max_score_per_test": 10
  },
  "test_scenarios": [
    {
      "id": 1,
      "description": "Get the current game state",
      "expected_tool": "get_game_state",
      "scoring": {
        "correct_tool": 4,
        "valid_json": 3,
        "proper_terminology": 2,
        "coordinates": 1
      }
    },
    {
      "id": 2,
      "description": "Move infantry unit to coordinates 150,200",
      "expected_tool": "move_units",
      "expected_coordinates": [150, 200],
      "scoring": {
        "correct_tool": 4,
        "valid_json": 3,
        "proper_terminology": 2,
        "coordinates": 1
      }
    },
    {
      "id": 3,
      "description": "Attack enemy tank at location 300,150",
      "expected_tool": "attack_unit",
      "expected_coordinates": [300, 150],
      "scoring": {
        "correct_tool": 4,
        "valid_json": 3,
        "proper_terminology": 2,
        "coordinates": 1
      }
    }
  ],
  "results": [
    {
      "rank": 1,
      "model_name": "Qwen2.5-Coder-1.5B-Q4",
      "filename": "qwen2.5-coder-1.5b-instruct-q4_0.gguf",
      "avg_score": 9.7,
      "avg_time": 4.12,
      "size_mb": 1017,
      "efficiency": 2.34,
      "status": "champion",
      "notes": "Exceptional MCP performance. Wraps JSON in markdown code blocks. 10/10 on tests 2 and 3, 9/10 on test 1.",
      "detailed_scores": [9, 10, 10]
    },
    {
      "rank": 2,
      "model_name": "Qwen2.5-Coder-0.5B",
      "filename": "qwen2.5-coder-0.5b-instruct-q4_0.gguf",
      "avg_score": 4.3,
      "avg_time": 2.08,
      "size_mb": 409,
      "efficiency": 2.08,
      "status": "previous_champion",
      "notes": "Best budget option. Good balance of size and performance."
    },
    {
      "rank": 3,
      "model_name": "Qwen3-0.6B",
      "filename": "Qwen3-0.6B-Q8_0.gguf",
      "avg_score": 3.7,
      "avg_time": 3.98,
      "size_mb": 610,
      "efficiency": 0.92,
      "status": "functional"
    },
    {
      "rank": 4,
      "model_name": "Gemma-3-270M",
      "filename": "gemma-3-270m-it-qat-Q8_0.gguf",
      "avg_score": 3.7,
      "avg_time": 2.29,
      "size_mb": 428,
      "efficiency": 1.60,
      "status": "functional",
      "notes": "Ultra-lightweight champion. Excellent efficiency for its tiny size."
    },
    {
      "rank": 5,
      "model_name": "MCPR-L-3B-Exa-Q8",
      "filename": "mcprl-3b-exa.Q8_0.gguf",
      "avg_score": 3.7,
      "avg_time": 17.42,
      "size_mb": 3133,
      "efficiency": 0.21,
      "status": "functional",
      "notes": "MCP-specialized but slow. Large size, poor efficiency."
    },
    {
      "rank": 6,
      "model_name": "Gemma-3n-E2B-it-Q8",
      "filename": "google_gemma-3n-E2B-it-Q8_0.gguf",
      "avg_score": 3.7,
      "avg_time": 14.80,
      "size_mb": 4566,
      "efficiency": 0.25,
      "status": "functional",
      "notes": "Largest model tested. Poor efficiency despite high quantization."
    },
    {
      "rank": 7,
      "model_name": "Qwen3-1.7B",
      "filename": "Qwen3-1.7B-Q4_0.gguf",
      "avg_score": 3.7,
      "avg_time": 6.24,
      "size_mb": 1008,
      "efficiency": 0.59,
      "status": "functional"
    },
    {
      "rank": 8,
      "model_name": "Qwen2.5-0.5B",
      "filename": "qwen2.5-0.5b-instruct-q4_0.gguf",
      "avg_score": 2.7,
      "avg_time": 1.17,
      "size_mb": 409,
      "efficiency": 2.28,
      "status": "functional",
      "notes": "Fast but limited MCP capability. General-purpose model."
    },
    {
      "rank": 9,
      "model_name": "Gemma-3n-E2B-it-IQ2",
      "filename": "gemma-3n-E2B-it-UD-IQ2_XXS.gguf",
      "avg_score": 2.3,
      "avg_time": 14.11,
      "size_mb": 1958,
      "efficiency": 0.17,
      "status": "functional",
      "notes": "Heavy quantization impacts quality."
    },
    {
      "rank": 10,
      "model_name": "Llama-Breeze2-3B-Q2",
      "filename": "Llama-Breeze2-3B-Instruct-Text.Q2_K.gguf",
      "avg_score": 1.3,
      "avg_time": 11.39,
      "size_mb": 1424,
      "efficiency": 0.12,
      "status": "functional",
      "notes": "Poor performance. Q2 quantization too aggressive."
    },
    {
      "rank": 11,
      "model_name": "Yi-Coder-1.5B-Q4",
      "filename": "Yi-Coder-1.5B.Q4_0.gguf",
      "avg_score": 0.0,
      "avg_time": 11.64,
      "size_mb": 826,
      "efficiency": 0.0,
      "status": "failed",
      "notes": "Prompt format incompatibility. Returns system prompt instead of generating responses."
    },
    {
      "rank": 12,
      "model_name": "MCP-Instruct-v1-Q4",
      "filename": "mcp-instruct-v1.Q4_K_M.gguf",
      "avg_score": 0.0,
      "avg_time": 0.0,
      "size_mb": 697,
      "efficiency": 0.0,
      "status": "failed",
      "notes": "Technical error: llama_decode returned -1"
    },
    {
      "rank": 13,
      "model_name": "MCPR-L-3B-Exa-Q2",
      "filename": "mcprl-3b-exa.Q2_K.gguf",
      "avg_score": 0.0,
      "avg_time": 10.63,
      "size_mb": 1216,
      "efficiency": 0.0,
      "status": "failed",
      "notes": "Produces gibberish output. Q2 quantization too aggressive for this architecture."
    },
    {
      "rank": 14,
      "model_name": "MCP-Instruct-v1-Q8",
      "filename": "mcp-instruct-v1.Q8_0.gguf",
      "avg_score": 0.0,
      "avg_time": 0.0,
      "size_mb": 1465,
      "efficiency": 0.0,
      "status": "failed",
      "notes": "Technical error: llama_decode returned -1. Same issue as Q4 version."
    }
  ],
  "key_insights": {
    "champion": {
      "model": "Qwen2.5-Coder-1.5B-Q4",
      "score": 9.7,
      "reason": "Code-specialized models excel at structured JSON generation. Near-perfect MCP capability."
    },
    "scaling_effect": {
      "observation": "Increasing parameters from 0.5B to 1.5B more than doubled MCP score (4.3 → 9.7)",
      "conclusion": "Parameter scaling works exceptionally well for code-specialized models"
    },
    "mcp_specialized_disappointment": {
      "observation": "MCP-Instruct models completely failed. MCPR-L models scored only 3.7/10 at best.",
      "conclusion": "MCP specialization alone is insufficient. Code training provides better foundation."
    },
    "quantization_impact": {
      "observation": "Q2 quantization caused failures or poor performance. Q4 and Q8 worked well.",
      "conclusion": "Avoid Q2 quantization for MCP tasks. Q4 offers best size/quality tradeoff."
    },
    "size_efficiency": {
      "observation": "Gemma-3-270M (428MB) matched 3133MB model performance",
      "conclusion": "Larger models don't guarantee better MCP performance"
    }
  },
  "recommendations": {
    "primary": {
      "model": "Qwen2.5-Coder-1.5B-Q4",
      "use_case": "Production deployments requiring high-quality MCP",
      "requirement": "JSON extraction logic to handle markdown code blocks"
    },
    "budget": {
      "model": "Qwen2.5-Coder-0.5B",
      "use_case": "Resource-constrained environments",
      "advantage": "2x smaller, 2x faster, still 4.3/10 performance"
    },
    "ultra_lightweight": {
      "model": "Gemma-3-270M",
      "use_case": "Edge devices, embedded systems",
      "advantage": "Only 428MB, decent 3.7/10 performance"
    },
    "avoid": [
      {
        "model": "MCP-Instruct-v1 (all versions)",
        "reason": "Technical incompatibility with llama.cpp"
      },
      {
        "model": "Yi-Coder-1.5B",
        "reason": "Prompt format incompatibility"
      },
      {
        "model": "Any Q2 quantization",
        "reason": "Too aggressive, causes failures or gibberish"
      }
    ]
  }
}