Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from textblob import TextBlob
|
| 3 |
-
from transformers import
|
| 4 |
import torch
|
| 5 |
import base64
|
| 6 |
import numpy as np
|
|
@@ -8,17 +8,23 @@ import ffmpeg
|
|
| 8 |
import os
|
| 9 |
import glob # Imported to find example files
|
| 10 |
|
|
|
|
| 11 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 12 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 13 |
|
|
|
|
| 14 |
model_id = "openai/whisper-small"
|
| 15 |
|
| 16 |
-
model
|
| 17 |
-
|
|
|
|
| 18 |
)
|
| 19 |
model.to(device)
|
|
|
|
|
|
|
| 20 |
processor = AutoProcessor.from_pretrained(model_id)
|
| 21 |
|
|
|
|
| 22 |
pipe = pipeline(
|
| 23 |
"automatic-speech-recognition",
|
| 24 |
model=model,
|
|
@@ -31,7 +37,7 @@ pipe = pipeline(
|
|
| 31 |
|
| 32 |
def sentiment_analysis(text: str) -> dict:
|
| 33 |
"""
|
| 34 |
-
Analyze the sentiment of the given text.
|
| 35 |
"""
|
| 36 |
blob = TextBlob(text)
|
| 37 |
sentiment = blob.sentiment
|
|
@@ -46,65 +52,101 @@ def sentiment_analysis(text: str) -> dict:
|
|
| 46 |
def process_audio(audio_path: str) -> dict:
|
| 47 |
"""
|
| 48 |
Processes an audio file from a local path, transcribes it, and analyzes its sentiment.
|
| 49 |
-
Args:
|
| 50 |
-
audio_path (str): The file path to the audio file. Or a base64 string of the audio for a remote MCP server.
|
| 51 |
-
|
| 52 |
-
Returns:
|
| 53 |
-
dict: The sentiment analysis result or an error message.
|
| 54 |
"""
|
| 55 |
if not audio_path or not os.path.exists(audio_path):
|
| 56 |
return {"error": "Invalid or non-existent file path provided."}
|
| 57 |
|
| 58 |
try:
|
| 59 |
-
# Use ffmpeg to read the audio file and convert it to a raw PCM buffer.
|
| 60 |
-
# The pipeline expects a 16kHz mono audio stream.
|
| 61 |
out, _ = (
|
| 62 |
ffmpeg
|
| 63 |
.input(audio_path)
|
| 64 |
.output('pipe:1', format='s16le', ac=1, ar=16000)
|
| 65 |
.run(capture_stdout=True, capture_stderr=True)
|
| 66 |
)
|
| 67 |
-
|
| 68 |
-
# Convert the raw PCM buffer to a NumPy array of 32-bit floats.
|
| 69 |
audio_np = np.frombuffer(out, np.int16).astype(np.float32) / 32768.0
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
transcription_result = pipe(audio_np)
|
| 73 |
transcript_text = transcription_result["text"]
|
| 74 |
-
|
| 75 |
except Exception as e:
|
| 76 |
-
|
| 77 |
-
return {"error": f"Failed to process audio: {str(e)}"}
|
| 78 |
|
| 79 |
-
# Perform sentiment analysis on the transcribed text
|
| 80 |
return sentiment_analysis(transcript_text)
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
example_files = (
|
| 83 |
-
glob.glob(os.path.join(examples_dir, "*.wav"))
|
|
|
|
|
|
|
| 84 |
)
|
| 85 |
examples_list = [[file] for file in example_files]
|
|
|
|
| 86 |
|
| 87 |
|
|
|
|
| 88 |
demo = gr.Interface(
|
| 89 |
-
fn=
|
| 90 |
-
# The input is an Audio component that accepts file uploads or microphone input
|
| 91 |
inputs=gr.Audio(type="filepath", label="Upload Audio File or Record"),
|
| 92 |
outputs=gr.JSON(label="Analysis Result"),
|
| 93 |
title="🎙️ Audio Sentiment Analysis (Whisper Small)",
|
| 94 |
description="""
|
| 95 |
Analyze the sentiment of spoken words.
|
| 96 |
-
Upload an audio file, record
|
| 97 |
-
The
|
| 98 |
""",
|
| 99 |
-
examples=examples_list,
|
| 100 |
article="""
|
| 101 |
### How it Works
|
| 102 |
-
This tool uses a speech-to-text model to transcribe
|
|
|
|
| 103 |
""",
|
| 104 |
theme='huggingface'
|
| 105 |
)
|
| 106 |
|
| 107 |
# Launch the interface and MCP server
|
| 108 |
if __name__ == "__main__":
|
|
|
|
| 109 |
# pip install gradio textblob "transformers[torch]" accelerate safetensors ffmpeg-python numpy
|
| 110 |
demo.launch(mcp_server=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from textblob import TextBlob
|
| 3 |
+
from transformers import AutoModelForSpeechSeqSeq, AutoProcessor, pipeline
|
| 4 |
import torch
|
| 5 |
import base64
|
| 6 |
import numpy as np
|
|
|
|
| 8 |
import os
|
| 9 |
import glob # Imported to find example files
|
| 10 |
|
| 11 |
+
# 1. Set up device and data type for optimized performance
|
| 12 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 13 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 14 |
|
| 15 |
+
# 2. Define the model ID for the Whisper model
|
| 16 |
model_id = "openai/whisper-small"
|
| 17 |
|
| 18 |
+
# 3. Load the model from pretrained weights
|
| 19 |
+
model = AutoModelForSpeechSeqSeq.from_pretrained(
|
| 20 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 21 |
)
|
| 22 |
model.to(device)
|
| 23 |
+
|
| 24 |
+
# 4. Load the processor which includes the feature extractor and tokenizer
|
| 25 |
processor = AutoProcessor.from_pretrained(model_id)
|
| 26 |
|
| 27 |
+
# 5. Create the ASR pipeline with the loaded components
|
| 28 |
pipe = pipeline(
|
| 29 |
"automatic-speech-recognition",
|
| 30 |
model=model,
|
|
|
|
| 37 |
|
| 38 |
def sentiment_analysis(text: str) -> dict:
|
| 39 |
"""
|
| 40 |
+
Analyze the sentiment of the given text.
|
| 41 |
"""
|
| 42 |
blob = TextBlob(text)
|
| 43 |
sentiment = blob.sentiment
|
|
|
|
| 52 |
def process_audio(audio_path: str) -> dict:
|
| 53 |
"""
|
| 54 |
Processes an audio file from a local path, transcribes it, and analyzes its sentiment.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
"""
|
| 56 |
if not audio_path or not os.path.exists(audio_path):
|
| 57 |
return {"error": "Invalid or non-existent file path provided."}
|
| 58 |
|
| 59 |
try:
|
|
|
|
|
|
|
| 60 |
out, _ = (
|
| 61 |
ffmpeg
|
| 62 |
.input(audio_path)
|
| 63 |
.output('pipe:1', format='s16le', ac=1, ar=16000)
|
| 64 |
.run(capture_stdout=True, capture_stderr=True)
|
| 65 |
)
|
|
|
|
|
|
|
| 66 |
audio_np = np.frombuffer(out, np.int16).astype(np.float32) / 32768.0
|
| 67 |
+
transcription_result = pipe(audio_np)
|
| 68 |
+
transcript_text = transcription_result["text"]
|
| 69 |
+
except Exception as e:
|
| 70 |
+
return {"error": f"Failed to process audio file: {str(e)}"}
|
| 71 |
|
| 72 |
+
return sentiment_analysis(transcript_text)
|
| 73 |
+
|
| 74 |
+
def process_base64_audio(base64_data_uri: str) -> dict:
|
| 75 |
+
"""
|
| 76 |
+
Decodes a Base64 audio data URI, processes it in-memory, transcribes it, and analyzes its sentiment.
|
| 77 |
+
"""
|
| 78 |
+
if not isinstance(base64_data_uri, str) or "base64," not in base64_data_uri:
|
| 79 |
+
return {"error": "Invalid or empty Base64 data URI provided."}
|
| 80 |
+
|
| 81 |
+
try:
|
| 82 |
+
_, encoded_data = base64_data_uri.split(',', 1)
|
| 83 |
+
audio_data = base64.b64decode(encoded_data)
|
| 84 |
+
out, _ = (
|
| 85 |
+
ffmpeg
|
| 86 |
+
.input('pipe:0')
|
| 87 |
+
.output('pipe:1', format='s16le', ac=1, ar=16000)
|
| 88 |
+
.run(input=audio_data, capture_stdout=True, capture_stderr=True)
|
| 89 |
+
)
|
| 90 |
+
audio_np = np.frombuffer(out, np.int16).astype(np.float32) / 32768.0
|
| 91 |
transcription_result = pipe(audio_np)
|
| 92 |
transcript_text = transcription_result["text"]
|
|
|
|
| 93 |
except Exception as e:
|
| 94 |
+
return {"error": f"Failed to process Base64 audio: {str(e)}"}
|
|
|
|
| 95 |
|
|
|
|
| 96 |
return sentiment_analysis(transcript_text)
|
| 97 |
|
| 98 |
+
def analyze_audio_input(audio_input: str) -> dict:
|
| 99 |
+
"""
|
| 100 |
+
Router function to handle both file paths and Base64 strings.
|
| 101 |
+
This allows the Gradio UI to use file uploads and the API to use Base64.
|
| 102 |
+
"""
|
| 103 |
+
# Check if the input is a valid file path provided by the Gradio component
|
| 104 |
+
if audio_input and os.path.exists(audio_input):
|
| 105 |
+
return process_audio(audio_input)
|
| 106 |
+
# Otherwise, assume it's a Base64 string from an API call
|
| 107 |
+
elif isinstance(audio_input, str):
|
| 108 |
+
return process_base64_audio(audio_input)
|
| 109 |
+
else:
|
| 110 |
+
return {"error": f"Invalid input type: {type(audio_input)}"}
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# --- Code to find and load examples ---
|
| 114 |
+
examples_dir = "examples"
|
| 115 |
+
if not os.path.exists(examples_dir):
|
| 116 |
+
os.makedirs(examples_dir)
|
| 117 |
+
print(f"Created '{examples_dir}/' directory. Please add your audio examples there.")
|
| 118 |
+
|
| 119 |
example_files = (
|
| 120 |
+
glob.glob(os.path.join(examples_dir, "*.wav")) +
|
| 121 |
+
glob.glob(os.path.join(examples_dir, "*.mp3")) +
|
| 122 |
+
glob.glob(os.path.join(examples_dir, "*.flac"))
|
| 123 |
)
|
| 124 |
examples_list = [[file] for file in example_files]
|
| 125 |
+
# --- End of example loading ---
|
| 126 |
|
| 127 |
|
| 128 |
+
# Create the Gradio interface
|
| 129 |
demo = gr.Interface(
|
| 130 |
+
fn=analyze_audio_input, # Point to the main router function
|
|
|
|
| 131 |
inputs=gr.Audio(type="filepath", label="Upload Audio File or Record"),
|
| 132 |
outputs=gr.JSON(label="Analysis Result"),
|
| 133 |
title="🎙️ Audio Sentiment Analysis (Whisper Small)",
|
| 134 |
description="""
|
| 135 |
Analyze the sentiment of spoken words.
|
| 136 |
+
**UI**: Upload an audio file, record directly, or click an example.
|
| 137 |
+
**API**: The endpoint also accepts a Base64 encoded audio data URI as input.
|
| 138 |
""",
|
| 139 |
+
examples=examples_list,
|
| 140 |
article="""
|
| 141 |
### How it Works
|
| 142 |
+
This tool uses a speech-to-text model (`openai/whisper-small`) to transcribe audio, then TextBlob analyzes the text sentiment.
|
| 143 |
+
The server can handle both local file paths (from the UI) and Base64 strings (from API calls).
|
| 144 |
""",
|
| 145 |
theme='huggingface'
|
| 146 |
)
|
| 147 |
|
| 148 |
# Launch the interface and MCP server
|
| 149 |
if __name__ == "__main__":
|
| 150 |
+
# Ensure ffmpeg is installed on your system.
|
| 151 |
# pip install gradio textblob "transformers[torch]" accelerate safetensors ffmpeg-python numpy
|
| 152 |
demo.launch(mcp_server=True)
|