Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,21 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
from flask import Flask, jsonify, request
|
| 3 |
from flask_cors import CORS
|
| 4 |
from transformers import pipeline
|
| 5 |
import logging
|
| 6 |
-
import gc
|
| 7 |
import torch
|
|
|
|
| 8 |
|
| 9 |
app = Flask(__name__)
|
| 10 |
-
CORS(app)
|
| 11 |
|
| 12 |
-
# Setup
|
| 13 |
-
logging.basicConfig(level=logging.INFO)
|
| 14 |
logger = logging.getLogger(__name__)
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
|
|
|
|
| 18 |
model_info = {
|
| 19 |
"Albert-Base-V2": {"task": "fill-mask", "description": "BERT-based model for masked language modeling"},
|
| 20 |
"GPT-2": {"task": "text-generation", "description": "GPT-2 model for text generation"},
|
|
@@ -24,117 +25,174 @@ model_info = {
|
|
| 24 |
"Bert-Tinny": {"task": "fill-mask", "description": "Tiny BERT model"},
|
| 25 |
"Distilbert-Base-Uncased": {"task": "fill-mask", "description": "Distilled BERT model"},
|
| 26 |
"Pythia": {"task": "text-generation", "description": "Pythia language model"},
|
| 27 |
-
"T5-Small": {"task": "text2text-generation", "description": "Small T5 model"},
|
| 28 |
"GPT-Neo": {"task": "text-generation", "description": "GPT-Neo model"},
|
| 29 |
"Distil-GPT-2": {"task": "text-generation", "description": "Distilled GPT-2 model"}
|
| 30 |
}
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
try:
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
#
|
| 42 |
models[model_name] = pipeline(
|
| 43 |
-
info["task"],
|
| 44 |
-
model=
|
| 45 |
-
device
|
| 46 |
-
torch_dtype=torch.float32
|
| 47 |
)
|
| 48 |
-
logger.info(f"✅ {model_name}
|
| 49 |
-
|
| 50 |
except Exception as e:
|
| 51 |
-
logger.error(f"❌
|
| 52 |
-
|
| 53 |
-
|
| 54 |
|
| 55 |
-
#
|
| 56 |
-
load_models()
|
| 57 |
|
| 58 |
@app.route('/')
|
| 59 |
def home():
|
| 60 |
-
"""
|
| 61 |
return jsonify({
|
| 62 |
-
"message": "
|
| 63 |
"status": "online",
|
| 64 |
-
"
|
| 65 |
-
"
|
| 66 |
-
"
|
| 67 |
-
"models_list": "/api/models",
|
| 68 |
-
"health_check": "/health",
|
| 69 |
-
"prediction": "/api/{model_name}"
|
| 70 |
-
},
|
| 71 |
-
"available_models": list(models.keys())
|
| 72 |
})
|
| 73 |
|
| 74 |
@app.route('/api/models', methods=['GET'])
|
| 75 |
-
def
|
| 76 |
-
"""
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
"name":
|
| 81 |
"task": info["task"],
|
| 82 |
-
"
|
| 83 |
-
"status": "ready" if name in models else "failed",
|
| 84 |
"endpoint": f"/api/{name}"
|
| 85 |
-
}
|
| 86 |
-
|
|
|
|
| 87 |
return jsonify({
|
| 88 |
-
"
|
| 89 |
-
"
|
| 90 |
-
"models":
|
| 91 |
})
|
| 92 |
|
| 93 |
-
@app.route('/api/<
|
| 94 |
-
def
|
| 95 |
-
"""
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
| 101 |
try:
|
|
|
|
|
|
|
|
|
|
| 102 |
data = request.json
|
| 103 |
inputs = data.get('inputs', '')
|
| 104 |
-
parameters = data.get('parameters', {})
|
| 105 |
-
|
| 106 |
if not inputs:
|
| 107 |
-
return jsonify({"error": "
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
#
|
| 113 |
-
if
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
else:
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
except Exception as e:
|
| 126 |
-
|
| 127 |
-
|
|
|
|
| 128 |
|
| 129 |
@app.route('/health', methods=['GET'])
|
| 130 |
def health_check():
|
| 131 |
-
"""
|
| 132 |
-
return jsonify({
|
| 133 |
-
"status": "healthy",
|
| 134 |
-
"models_loaded": len(models),
|
| 135 |
-
"models_total": len(model_info),
|
| 136 |
-
"memory_usage": "CPU only"
|
| 137 |
-
})
|
| 138 |
|
|
|
|
| 139 |
if __name__ == '__main__':
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
from flask import Flask, jsonify, request
|
| 3 |
from flask_cors import CORS
|
| 4 |
from transformers import pipeline
|
| 5 |
import logging
|
|
|
|
| 6 |
import torch
|
| 7 |
+
import os # Untuk mendapatkan environment variables, misalnya di Hugging Face Spaces
|
| 8 |
|
| 9 |
app = Flask(__name__)
|
| 10 |
+
CORS(app) # Mengaktifkan CORS untuk mengizinkan permintaan dari frontend Anda
|
| 11 |
|
| 12 |
+
# --- Setup Logging ---
|
| 13 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 14 |
logger = logging.getLogger(__name__)
|
| 15 |
|
| 16 |
+
# --- Konfigurasi Model dan Informasi ---
|
| 17 |
+
# Tambahkan 'hf_model_name' jika nama model di Hugging Face berbeda dari ID yang Anda inginkan.
|
| 18 |
+
# Jika nama model di Hugging Face sama, tidak perlu 'hf_model_name'.
|
| 19 |
model_info = {
|
| 20 |
"Albert-Base-V2": {"task": "fill-mask", "description": "BERT-based model for masked language modeling"},
|
| 21 |
"GPT-2": {"task": "text-generation", "description": "GPT-2 model for text generation"},
|
|
|
|
| 25 |
"Bert-Tinny": {"task": "fill-mask", "description": "Tiny BERT model"},
|
| 26 |
"Distilbert-Base-Uncased": {"task": "fill-mask", "description": "Distilled BERT model"},
|
| 27 |
"Pythia": {"task": "text-generation", "description": "Pythia language model"},
|
| 28 |
+
"T5-Small": {"task": "text2text-generation", "description": "Small T5 model", "hf_model_name": "t5-small"},
|
| 29 |
"GPT-Neo": {"task": "text-generation", "description": "GPT-Neo model"},
|
| 30 |
"Distil-GPT-2": {"task": "text-generation", "description": "Distilled GPT-2 model"}
|
| 31 |
}
|
| 32 |
|
| 33 |
+
# --- Penyimpanan Model Global (untuk Lazy Loading) ---
|
| 34 |
+
models = {}
|
| 35 |
+
|
| 36 |
+
# --- Fungsi Utility untuk Model Lazy Loading ---
|
| 37 |
+
def get_model_pipeline(model_name):
|
| 38 |
+
"""
|
| 39 |
+
Memuat model hanya jika belum dimuat (lazy loading).
|
| 40 |
+
Mengembalikan pipeline model yang diminta.
|
| 41 |
+
"""
|
| 42 |
+
if model_name not in models:
|
| 43 |
+
logger.info(f"Model '{model_name}' belum dimuat. Memuat sekarang...")
|
| 44 |
+
if model_name not in model_info:
|
| 45 |
+
logger.error(f"Informasi model '{model_name}' tidak ditemukan di model_info.")
|
| 46 |
+
raise ValueError(f"Model '{model_name}' tidak dikenal.")
|
| 47 |
+
|
| 48 |
+
info = model_info[model_name]
|
| 49 |
try:
|
| 50 |
+
# Gunakan 'hf_model_name' jika disediakan, jika tidak, gunakan model_name dengan prefix 'Lyon28/'
|
| 51 |
+
hf_model_path = info.get("hf_model_name", f"Lyon28/{model_name}")
|
| 52 |
+
|
| 53 |
+
# Explicitly set device to "cpu" for CPU-only environments
|
| 54 |
models[model_name] = pipeline(
|
| 55 |
+
info["task"],
|
| 56 |
+
model=hf_model_path,
|
| 57 |
+
device="cpu", # Penting: Pastikan ini "cpu" jika Anda tidak punya GPU
|
| 58 |
+
torch_dtype=torch.float32 # Tetap float32 untuk performa terbaik di CPU
|
| 59 |
)
|
| 60 |
+
logger.info(f"✅ Model '{model_name}' (Path: {hf_model_path}) berhasil dimuat.")
|
|
|
|
| 61 |
except Exception as e:
|
| 62 |
+
logger.error(f"❌ Gagal memuat model '{model_name}' (Path: {hf_model_path}): {str(e)}", exc_info=True)
|
| 63 |
+
raise RuntimeError(f"Gagal memuat model: {model_name}. Detail: {str(e)}") from e
|
| 64 |
+
return models[model_name]
|
| 65 |
|
| 66 |
+
# --- Rute API ---
|
|
|
|
| 67 |
|
| 68 |
@app.route('/')
|
| 69 |
def home():
|
| 70 |
+
"""Endpoint root untuk status API."""
|
| 71 |
return jsonify({
|
| 72 |
+
"message": "Flask API untuk Model Hugging Face",
|
| 73 |
"status": "online",
|
| 74 |
+
"loaded_models_count": len(models),
|
| 75 |
+
"available_model_configs": list(model_info.keys()),
|
| 76 |
+
"info": "Gunakan /api/models untuk daftar model yang tersedia."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
})
|
| 78 |
|
| 79 |
@app.route('/api/models', methods=['GET'])
|
| 80 |
+
def list_available_models():
|
| 81 |
+
"""Mengembalikan daftar semua model yang dikonfigurasi, termasuk status muatan."""
|
| 82 |
+
available_models_data = [
|
| 83 |
+
{
|
| 84 |
+
"id": name,
|
| 85 |
+
"name": info["description"],
|
| 86 |
"task": info["task"],
|
| 87 |
+
"status": "loaded" if name in models else "not_loaded", # Menunjukkan apakah sudah dimuat via lazy loading
|
|
|
|
| 88 |
"endpoint": f"/api/{name}"
|
| 89 |
+
}
|
| 90 |
+
for name, info in model_info.items()
|
| 91 |
+
]
|
| 92 |
return jsonify({
|
| 93 |
+
"total_configured_models": len(model_info),
|
| 94 |
+
"currently_loaded_models": len(models),
|
| 95 |
+
"models": available_models_data
|
| 96 |
})
|
| 97 |
|
| 98 |
+
@app.route('/api/<model_id>', methods=['POST'])
|
| 99 |
+
def predict_with_model(model_id):
|
| 100 |
+
"""
|
| 101 |
+
Endpoint utama untuk prediksi model.
|
| 102 |
+
Menerima 'inputs' (teks) dan 'parameters' (dictionary) opsional.
|
| 103 |
+
"""
|
| 104 |
+
logger.info(f"Menerima permintaan untuk model: {model_id}")
|
| 105 |
+
if model_id not in model_info:
|
| 106 |
+
logger.warning(f"Permintaan untuk model tidak dikenal: {model_id}")
|
| 107 |
+
return jsonify({"error": f"Model '{model_id}' tidak dikenal. Lihat /api/models untuk daftar yang tersedia."}), 404
|
| 108 |
+
|
| 109 |
try:
|
| 110 |
+
model_pipeline = get_model_pipeline(model_id) # Memuat model jika belum ada
|
| 111 |
+
model_task = model_info[model_id]["task"]
|
| 112 |
+
|
| 113 |
data = request.json
|
| 114 |
inputs = data.get('inputs', '')
|
| 115 |
+
parameters = data.get('parameters', {}) # Default ke dictionary kosong jika tidak ada
|
| 116 |
+
|
| 117 |
if not inputs:
|
| 118 |
+
return jsonify({"error": "Input 'inputs' tidak boleh kosong."}), 400
|
| 119 |
+
|
| 120 |
+
logger.info(f"Inferensi: Model='{model_id}', Task='{model_task}', Input='{inputs[:100]}...', Params='{parameters}'")
|
| 121 |
+
|
| 122 |
+
result = []
|
| 123 |
+
# --- Penanganan Parameter dan Inferensi berdasarkan Tipe Tugas ---
|
| 124 |
+
if model_task == "text-generation":
|
| 125 |
+
# Default parameters for text-generation
|
| 126 |
+
gen_params = {
|
| 127 |
+
"max_new_tokens": parameters.get("max_new_tokens", 150), # Lebih banyak token untuk roleplay
|
| 128 |
+
"temperature": parameters.get("temperature", 0.7),
|
| 129 |
+
"do_sample": parameters.get("do_sample", True),
|
| 130 |
+
"return_full_text": parameters.get("return_full_text", False), # Sangat penting untuk chatbot
|
| 131 |
+
"num_return_sequences": parameters.get("num_return_sequences", 1),
|
| 132 |
+
"top_k": parameters.get("top_k", 50),
|
| 133 |
+
"top_p": parameters.get("top_p", 0.95),
|
| 134 |
+
"repetition_penalty": parameters.get("repetition_penalty", 1.2), # Mencegah pengulangan
|
| 135 |
+
}
|
| 136 |
+
result = model_pipeline(inputs, **gen_params)
|
| 137 |
+
|
| 138 |
+
elif model_task == "fill-mask":
|
| 139 |
+
mask_params = {
|
| 140 |
+
"top_k": parameters.get("top_k", 5)
|
| 141 |
+
}
|
| 142 |
+
result = model_pipeline(inputs, **mask_params)
|
| 143 |
+
|
| 144 |
+
elif model_task == "text2text-generation": # Misalnya untuk T5
|
| 145 |
+
t2t_params = {
|
| 146 |
+
"max_new_tokens": parameters.get("max_new_tokens", 150),
|
| 147 |
+
"temperature": parameters.get("temperature", 0.7),
|
| 148 |
+
"do_sample": parameters.get("do_sample", True),
|
| 149 |
+
}
|
| 150 |
+
result = model_pipeline(inputs, **t2t_params)
|
| 151 |
+
|
| 152 |
+
else:
|
| 153 |
+
# Fallback for other tasks or if no specific parameters are needed
|
| 154 |
+
result = model_pipeline(inputs, **parameters)
|
| 155 |
+
|
| 156 |
+
# --- Konsistensi Format Output ---
|
| 157 |
+
response_output = {}
|
| 158 |
+
if model_task == "text-generation" or model_task == "text2text-generation":
|
| 159 |
+
if result and len(result) > 0 and 'generated_text' in result[0]:
|
| 160 |
+
response_output['text'] = result[0]['generated_text'].strip()
|
| 161 |
+
else:
|
| 162 |
+
response_output['text'] = "[Tidak ada teks yang dihasilkan atau format tidak sesuai.]"
|
| 163 |
+
elif model_task == "fill-mask":
|
| 164 |
+
response_output['predictions'] = [
|
| 165 |
+
{"sequence": p.get('sequence', ''), "score": p.get('score', 0.0), "token_str": p.get('token_str', '')}
|
| 166 |
+
for p in result
|
| 167 |
+
]
|
| 168 |
else:
|
| 169 |
+
# Untuk jenis tugas lain, kembalikan hasil mentah
|
| 170 |
+
response_output = result
|
| 171 |
+
|
| 172 |
+
logger.info(f"Inferensi berhasil untuk '{model_id}'. Output singkat: '{str(response_output)[:200]}'")
|
| 173 |
+
return jsonify({"model": model_id, "inputs": inputs, "outputs": response_output})
|
| 174 |
+
|
| 175 |
+
except ValueError as ve:
|
| 176 |
+
# Error yang berasal dari get_model_pipeline atau validasi input
|
| 177 |
+
logger.error(f"Validasi atau konfigurasi error untuk model '{model_id}': {str(ve)}")
|
| 178 |
+
return jsonify({"error": str(ve), "message": "Kesalahan konfigurasi atau input model."}), 400
|
| 179 |
+
except RuntimeError as re:
|
| 180 |
+
# Error saat memuat model
|
| 181 |
+
logger.error(f"Error runtime saat memuat model '{model_id}': {str(re)}")
|
| 182 |
+
return jsonify({"error": str(re), "message": "Model gagal dimuat."}), 503 # Service Unavailable
|
| 183 |
except Exception as e:
|
| 184 |
+
# Catch all other unexpected errors during prediction
|
| 185 |
+
logger.error(f"Terjadi kesalahan tak terduga saat memprediksi dengan model '{model_id}': {str(e)}", exc_info=True)
|
| 186 |
+
return jsonify({"error": str(e), "message": "Terjadi kesalahan internal server."}), 500
|
| 187 |
|
| 188 |
@app.route('/health', methods=['GET'])
|
| 189 |
def health_check():
|
| 190 |
+
"""Endpoint untuk health check."""
|
| 191 |
+
return jsonify({"status": "healthy", "loaded_models_count": len(models), "message": "API berfungsi normal."})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
+
# --- Jalankan Aplikasi ---
|
| 194 |
if __name__ == '__main__':
|
| 195 |
+
# Untuk Hugging Face Spaces, port biasanya 7860
|
| 196 |
+
# Menggunakan HOST dari environment variable jika tersedia, default ke 0.0.0.0
|
| 197 |
+
# Debug=False untuk produksi
|
| 198 |
+
app.run(host=os.getenv('HOST', '0.0.0.0'), port=int(os.getenv('PORT', 7860)), debug=False)
|