Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from src.models.autoencoder.base import BaseAE | |
| class LatentAE(BaseAE): | |
| def __init__(self, precompute=False, weight_path:str=None): | |
| super().__init__() | |
| self.precompute = precompute | |
| self.model = None | |
| self.weight_path = weight_path | |
| from diffusers.models import AutoencoderKL | |
| setattr(self, "model", AutoencoderKL.from_pretrained(self.weight_path)) | |
| self.scaling_factor = self.model.config.scaling_factor | |
| def _impl_encode(self, x): | |
| assert self.model is not None | |
| if self.precompute: | |
| return x.mul_(self.scaling_factor) | |
| encodedx = self.model.encode(x).latent_dist.sample().mul_(self.scaling_factor) | |
| return encodedx | |
| def _impl_decode(self, x): | |
| assert self.model is not None | |
| return self.model.decode(x.div_(self.scaling_factor)).sample |