Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- app/__pycache__/draw_diagram.cpython-310.pyc +0 -0
- app/__pycache__/pages.cpython-310.pyc +0 -0
- app/draw_diagram.py +5 -1
- app/pages.py +62 -50
app/__pycache__/draw_diagram.cpython-310.pyc
CHANGED
|
Binary files a/app/__pycache__/draw_diagram.cpython-310.pyc and b/app/__pycache__/draw_diagram.cpython-310.pyc differ
|
|
|
app/__pycache__/pages.cpython-310.pyc
CHANGED
|
Binary files a/app/__pycache__/pages.cpython-310.pyc and b/app/__pycache__/pages.cpython-310.pyc differ
|
|
|
app/draw_diagram.py
CHANGED
|
@@ -104,7 +104,11 @@ def draw(folder_name, category_one, category_two, sort, num_sort, model_size_ran
|
|
| 104 |
ascending=False
|
| 105 |
).reset_index(drop=True)
|
| 106 |
|
| 107 |
-
styled_df = chart_data_table.style.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
subset=[chart_data_table.columns[2]], color='yellow'
|
| 109 |
)
|
| 110 |
|
|
|
|
| 104 |
ascending=False
|
| 105 |
).reset_index(drop=True)
|
| 106 |
|
| 107 |
+
styled_df = chart_data_table.style.format(
|
| 108 |
+
{
|
| 109 |
+
chart_data_table.columns[i]: "{:.3f}" for i in range(2, len(chart_data_table.columns))
|
| 110 |
+
}
|
| 111 |
+
).highlight_max(
|
| 112 |
subset=[chart_data_table.columns[2]], color='yellow'
|
| 113 |
)
|
| 114 |
|
app/pages.py
CHANGED
|
@@ -11,15 +11,21 @@ def dashboard():
|
|
| 11 |
[][gh]
|
| 12 |
""")
|
| 13 |
|
| 14 |
-
|
| 15 |
-
st.markdown("
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
st.divider()
|
| 20 |
|
| 21 |
-
|
| 22 |
-
st.markdown("#### What is [SeaEval](%s)?" % seaeval_url)
|
| 23 |
|
| 24 |
with st.container():
|
| 25 |
left_co, cent_co,last_co = st.columns(3)
|
|
@@ -64,13 +70,14 @@ def dashboard():
|
|
| 64 |
st.markdown("##### Citations")
|
| 65 |
|
| 66 |
st.markdown('''
|
| 67 |
-
|
| 68 |
@article{SeaEval,
|
| 69 |
title={SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning},
|
| 70 |
author={Wang, Bin and Liu, Zhengyuan and Huang, Xin and Jiao, Fangkai and Ding, Yang and Aw, Ai Ti and Chen, Nancy F.},
|
| 71 |
journal={NAACL},
|
| 72 |
year={2024}
|
| 73 |
}
|
|
|
|
| 74 |
''')
|
| 75 |
|
| 76 |
|
|
@@ -80,11 +87,8 @@ def cross_lingual_consistency():
|
|
| 80 |
filters_levelone = ['Zero Shot', 'Few Shot']
|
| 81 |
filters_leveltwo = [
|
| 82 |
'Cross-MMLU',
|
| 83 |
-
#'Cross-MMLU-No-Prompt',
|
| 84 |
'Cross-XQUAD',
|
| 85 |
-
#'Cross-XQUAD-No-Prompt',
|
| 86 |
'Cross-LogiQA',
|
| 87 |
-
#'Cross-LogiQA-No-Prompt',
|
| 88 |
]
|
| 89 |
|
| 90 |
category_one_dict = {
|
|
@@ -94,11 +98,8 @@ def cross_lingual_consistency():
|
|
| 94 |
|
| 95 |
category_two_dict = {
|
| 96 |
'Cross-MMLU' : 'cross_mmlu_no_prompt',
|
| 97 |
-
#'Cross-MMLU-No-Prompt' : 'cross_mmlu_no_prompt',
|
| 98 |
'Cross-XQUAD' : 'cross_xquad_no_prompt',
|
| 99 |
-
#'Cross-XQUAD-No-Prompt' : 'cross_xquad_no_prompt',
|
| 100 |
'Cross-LogiQA' : 'cross_logiqa_no_prompt',
|
| 101 |
-
#'Cross-LogiQA-No-Prompt': 'cross_logiqa_no_prompt',
|
| 102 |
}
|
| 103 |
|
| 104 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
|
@@ -128,7 +129,6 @@ def cultural_reasoning():
|
|
| 128 |
filters_levelone = ['Zero Shot', 'Few Shot']
|
| 129 |
filters_leveltwo = [
|
| 130 |
'SG-EVAL-v2-MCQ',
|
| 131 |
-
#'SG EVAL V2 MCQ No Prompt',
|
| 132 |
'SG-EVAL-v2-Open-Ended',
|
| 133 |
'SG-EVAL-v1-Cleaned',
|
| 134 |
'SG-EVAL-v1',
|
|
@@ -145,7 +145,6 @@ def cultural_reasoning():
|
|
| 145 |
'SG-EVAL-v2-MCQ' : 'sg_eval_v2_mcq_no_prompt',
|
| 146 |
'SG-EVAL-v1' : 'sg_eval',
|
| 147 |
'SG-EVAL-v1-Cleaned' : 'sg_eval_v1_cleaned',
|
| 148 |
-
# 'SG EVAL V2 MCQ No Prompt': 'sg_eval_v2_mcq_no_prompt',
|
| 149 |
'SG-EVAL-v2-Open-Ended' : 'sg_eval_v2_open',
|
| 150 |
'US-EVAL' : 'us_eval',
|
| 151 |
'CN-EVAL' : 'cn_eval',
|
|
@@ -175,24 +174,22 @@ def general_reasoning():
|
|
| 175 |
filters_leveltwo = [
|
| 176 |
'IndoMMLU',
|
| 177 |
'MMLU',
|
| 178 |
-
#'MMLU-No-Prompt',
|
| 179 |
'CMMLU',
|
| 180 |
-
#'IndoMMLU-No-Prompt',
|
| 181 |
'C-Eval',
|
| 182 |
'ZBench',
|
| 183 |
]
|
| 184 |
|
| 185 |
-
category_one_dict = {
|
| 186 |
-
|
|
|
|
|
|
|
| 187 |
|
| 188 |
category_two_dict = {
|
| 189 |
'IndoMMLU': 'indommlu_no_prompt',
|
| 190 |
-
'MMLU': 'mmlu_no_prompt',
|
| 191 |
-
|
| 192 |
-
'
|
| 193 |
-
'
|
| 194 |
-
'ZBench': 'zbench',
|
| 195 |
-
#'IndoMMLU-No-Prompt': 'indommlu_no_prompt',
|
| 196 |
}
|
| 197 |
|
| 198 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
|
@@ -215,18 +212,23 @@ def flores():
|
|
| 215 |
st.title("Task: FLORES-Translation")
|
| 216 |
|
| 217 |
filters_levelone = ['Zero Shot', 'Few Shot']
|
| 218 |
-
filters_leveltwo = [
|
|
|
|
| 219 |
'Vitenamese to English',
|
| 220 |
'Chinese to English',
|
| 221 |
'Malay to English'
|
| 222 |
]
|
| 223 |
|
| 224 |
-
category_one_dict = {
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
|
| 232 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
|
@@ -256,8 +258,10 @@ def emotion():
|
|
| 256 |
|
| 257 |
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 258 |
'Few Shot': 'few_shot'}
|
| 259 |
-
category_two_dict = {
|
| 260 |
-
|
|
|
|
|
|
|
| 261 |
|
| 262 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 263 |
with left:
|
|
@@ -285,11 +289,15 @@ def dialogue():
|
|
| 285 |
'DialogSum',
|
| 286 |
]
|
| 287 |
|
| 288 |
-
category_one_dict = {
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 295 |
with left:
|
|
@@ -319,17 +327,21 @@ def fundamental_nlp_tasks():
|
|
| 319 |
filters_levelone = ['Zero Shot', 'Few Shot']
|
| 320 |
filters_leveltwo = ['OCNLI', 'C3', 'COLA', 'QQP', 'MNLI', 'QNLI', 'WNLI', 'RTE', 'MRPC']
|
| 321 |
|
| 322 |
-
category_one_dict = {
|
| 323 |
-
'
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
'
|
| 328 |
-
'
|
| 329 |
-
'
|
| 330 |
-
'
|
| 331 |
-
'
|
| 332 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
|
| 334 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 335 |
with left:
|
|
|
|
| 11 |
[][gh]
|
| 12 |
""")
|
| 13 |
|
| 14 |
+
|
| 15 |
+
st.markdown("""
|
| 16 |
+
### Changelog
|
| 17 |
+
|
| 18 |
+
- **Dec 2024**:
|
| 19 |
+
- Updated results for **Cross-MMLU**, **Cross-LogiQA**, **Cross-XQuad**, **MMLU**, **IndoMMLU**, and **SG-Eval-v2** with new prompts (simple prompts to encourage reasoning).
|
| 20 |
+
- Added new models: **SEA-LION v3**, **Gemma-2**, and **Sailor 2**.
|
| 21 |
+
|
| 22 |
+
- **Nov 2024**:
|
| 23 |
+
- Updated layout and added support for comparison between models with similar sizes.
|
| 24 |
+
""")
|
| 25 |
|
| 26 |
st.divider()
|
| 27 |
|
| 28 |
+
st.markdown("#### What is [SeaEval](https://seaeval.github.io/)?")
|
|
|
|
| 29 |
|
| 30 |
with st.container():
|
| 31 |
left_co, cent_co,last_co = st.columns(3)
|
|
|
|
| 70 |
st.markdown("##### Citations")
|
| 71 |
|
| 72 |
st.markdown('''
|
| 73 |
+
```
|
| 74 |
@article{SeaEval,
|
| 75 |
title={SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning},
|
| 76 |
author={Wang, Bin and Liu, Zhengyuan and Huang, Xin and Jiao, Fangkai and Ding, Yang and Aw, Ai Ti and Chen, Nancy F.},
|
| 77 |
journal={NAACL},
|
| 78 |
year={2024}
|
| 79 |
}
|
| 80 |
+
```
|
| 81 |
''')
|
| 82 |
|
| 83 |
|
|
|
|
| 87 |
filters_levelone = ['Zero Shot', 'Few Shot']
|
| 88 |
filters_leveltwo = [
|
| 89 |
'Cross-MMLU',
|
|
|
|
| 90 |
'Cross-XQUAD',
|
|
|
|
| 91 |
'Cross-LogiQA',
|
|
|
|
| 92 |
]
|
| 93 |
|
| 94 |
category_one_dict = {
|
|
|
|
| 98 |
|
| 99 |
category_two_dict = {
|
| 100 |
'Cross-MMLU' : 'cross_mmlu_no_prompt',
|
|
|
|
| 101 |
'Cross-XQUAD' : 'cross_xquad_no_prompt',
|
|
|
|
| 102 |
'Cross-LogiQA' : 'cross_logiqa_no_prompt',
|
|
|
|
| 103 |
}
|
| 104 |
|
| 105 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
|
|
|
| 129 |
filters_levelone = ['Zero Shot', 'Few Shot']
|
| 130 |
filters_leveltwo = [
|
| 131 |
'SG-EVAL-v2-MCQ',
|
|
|
|
| 132 |
'SG-EVAL-v2-Open-Ended',
|
| 133 |
'SG-EVAL-v1-Cleaned',
|
| 134 |
'SG-EVAL-v1',
|
|
|
|
| 145 |
'SG-EVAL-v2-MCQ' : 'sg_eval_v2_mcq_no_prompt',
|
| 146 |
'SG-EVAL-v1' : 'sg_eval',
|
| 147 |
'SG-EVAL-v1-Cleaned' : 'sg_eval_v1_cleaned',
|
|
|
|
| 148 |
'SG-EVAL-v2-Open-Ended' : 'sg_eval_v2_open',
|
| 149 |
'US-EVAL' : 'us_eval',
|
| 150 |
'CN-EVAL' : 'cn_eval',
|
|
|
|
| 174 |
filters_leveltwo = [
|
| 175 |
'IndoMMLU',
|
| 176 |
'MMLU',
|
|
|
|
| 177 |
'CMMLU',
|
|
|
|
| 178 |
'C-Eval',
|
| 179 |
'ZBench',
|
| 180 |
]
|
| 181 |
|
| 182 |
+
category_one_dict = {
|
| 183 |
+
'Zero Shot': 'zero_shot',
|
| 184 |
+
'Few Shot' : 'few_shot'
|
| 185 |
+
}
|
| 186 |
|
| 187 |
category_two_dict = {
|
| 188 |
'IndoMMLU': 'indommlu_no_prompt',
|
| 189 |
+
'MMLU' : 'mmlu_no_prompt',
|
| 190 |
+
'C-Eval' : 'c_eval',
|
| 191 |
+
'CMMLU' : 'cmmlu',
|
| 192 |
+
'ZBench' : 'zbench',
|
|
|
|
|
|
|
| 193 |
}
|
| 194 |
|
| 195 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
|
|
|
| 212 |
st.title("Task: FLORES-Translation")
|
| 213 |
|
| 214 |
filters_levelone = ['Zero Shot', 'Few Shot']
|
| 215 |
+
filters_leveltwo = [
|
| 216 |
+
'Indonesian to English',
|
| 217 |
'Vitenamese to English',
|
| 218 |
'Chinese to English',
|
| 219 |
'Malay to English'
|
| 220 |
]
|
| 221 |
|
| 222 |
+
category_one_dict = {
|
| 223 |
+
'Zero Shot': 'zero_shot',
|
| 224 |
+
'Few Shot' : 'few_shot'
|
| 225 |
+
}
|
| 226 |
+
category_two_dict = {
|
| 227 |
+
'Indonesian to English': 'ind2eng',
|
| 228 |
+
'Vitenamese to English': 'vie2eng',
|
| 229 |
+
'Chinese to English' : 'zho2eng',
|
| 230 |
+
'Malay to English' : 'zsm2eng'
|
| 231 |
+
}
|
| 232 |
|
| 233 |
|
| 234 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
|
|
|
| 258 |
|
| 259 |
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 260 |
'Few Shot': 'few_shot'}
|
| 261 |
+
category_two_dict = {
|
| 262 |
+
'Indonesian Emotion Classification': 'ind_emotion',
|
| 263 |
+
'SST2' : 'sst2'
|
| 264 |
+
}
|
| 265 |
|
| 266 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 267 |
with left:
|
|
|
|
| 289 |
'DialogSum',
|
| 290 |
]
|
| 291 |
|
| 292 |
+
category_one_dict = {
|
| 293 |
+
'Zero Shot': 'zero_shot',
|
| 294 |
+
'Few Shot' : 'few_shot'
|
| 295 |
+
}
|
| 296 |
+
category_two_dict = {
|
| 297 |
+
'DREAM' : 'dream',
|
| 298 |
+
'SAMSum' : 'samsum',
|
| 299 |
+
'DialogSum': 'dialogsum'
|
| 300 |
+
}
|
| 301 |
|
| 302 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 303 |
with left:
|
|
|
|
| 327 |
filters_levelone = ['Zero Shot', 'Few Shot']
|
| 328 |
filters_leveltwo = ['OCNLI', 'C3', 'COLA', 'QQP', 'MNLI', 'QNLI', 'WNLI', 'RTE', 'MRPC']
|
| 329 |
|
| 330 |
+
category_one_dict = {
|
| 331 |
+
'Zero Shot': 'zero_shot',
|
| 332 |
+
'Few Shot' : 'few_shot'
|
| 333 |
+
}
|
| 334 |
+
category_two_dict = {
|
| 335 |
+
'OCNLI': 'ocnli',
|
| 336 |
+
'C3' : 'c3',
|
| 337 |
+
'COLA' : 'cola',
|
| 338 |
+
'QQP' : 'qqp',
|
| 339 |
+
'MNLI' : 'mnli',
|
| 340 |
+
'QNLI' : 'qnli',
|
| 341 |
+
'WNLI' : 'wnli',
|
| 342 |
+
'RTE' : 'rte',
|
| 343 |
+
'MRPC' : 'mrpc'
|
| 344 |
+
}
|
| 345 |
|
| 346 |
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 347 |
with left:
|