File size: 43,706 Bytes
d28afad d919708 1b86d8a 5da2025 2ee9112 8a9ebcc 1b86d8a 493a4a6 5e980fd 87b09dd 1b86d8a f53960f 1b86d8a fa42c97 87b09dd 5e980fd 509531f dcad397 d919708 a94def8 87b09dd d919708 87b09dd d919708 87b09dd 2ee9112 87b09dd 01237fb d28afad f2cc606 dcad397 87b09dd fa42c97 d919708 dcad397 87b09dd 5e980fd 87b09dd d919708 fa42c97 d919708 87b09dd f2cc606 7fa30a6 d919708 dcad397 d919708 f53960f d919708 1b86d8a 7372212 493a4a6 1b86d8a 87b09dd 1b86d8a 87b09dd 493a4a6 87b09dd 1b86d8a 87b09dd 493a4a6 87b09dd 493a4a6 87b09dd 5e980fd 7f03ffe d28afad 7f03ffe 5e980fd 87b09dd d919708 5e980fd d919708 87b09dd d919708 87b09dd d919708 7fa30a6 bb3c951 d919708 5e980fd bb3c951 87b09dd 5e980fd d28afad 5e980fd 7f03ffe 5e980fd 7f03ffe 5e980fd f53960f 7f03ffe d28afad 7f03ffe f53960f 7f03ffe f53960f 7f03ffe f53960f d28afad f53960f dcad397 f841fdd 1b86d8a 7372212 493a4a6 1b86d8a 87b09dd 1b86d8a 87b09dd 493a4a6 87b09dd 1b86d8a 87b09dd 493a4a6 87b09dd 493a4a6 87b09dd f841fdd 5e980fd f841fdd 7fa30a6 5e980fd f841fdd 5e980fd f841fdd 87b09dd f841fdd bb3c951 7fa30a6 87b09dd 5e980fd d28afad 5e980fd 87b09dd 493a4a6 87b09dd 493a4a6 87b09dd f841fdd 1b86d8a 7372212 493a4a6 1b86d8a 87b09dd f841fdd 5e980fd 7fa30a6 5e980fd bb3c951 5e980fd f841fdd 5e980fd f841fdd 87b09dd 7fa30a6 bb3c951 f841fdd 87b09dd 5e980fd d28afad 5e980fd f841fdd d919708 1b86d8a 7372212 493a4a6 1b86d8a 87b09dd d919708 bb3c951 5e980fd d919708 87b09dd 5e980fd 87b09dd bb3c951 5e980fd d919708 87b09dd d919708 87b09dd 7fa30a6 bb3c951 87b09dd 5e980fd d28afad 5e980fd 87b09dd 5e980fd d28afad 5e980fd d28afad 5e980fd d919708 1b86d8a 7372212 493a4a6 1b86d8a 87b09dd d919708 bb3c951 5e980fd 87b09dd 5e980fd 87b09dd bb3c951 5e980fd d919708 87b09dd d919708 87b09dd 7fa30a6 bb3c951 87b09dd 5e980fd d28afad 5e980fd 87b09dd 5e980fd d28afad 5e980fd d28afad 5e980fd d919708 f841fdd 1b86d8a 7372212 493a4a6 1b86d8a 87b09dd 493a4a6 87b09dd 1b86d8a 87b09dd 493a4a6 87b09dd 493a4a6 87b09dd 5e980fd 2ee9112 5e980fd 87b09dd bb3c951 5e980fd 2ee9112 87b09dd f841fdd 87b09dd 2ee9112 bb3c951 87b09dd 5e980fd d28afad 5e980fd 87b09dd 5e980fd d28afad 5e980fd d28afad 5e980fd 493a4a6 5e980fd 493a4a6 5e980fd f841fdd d919708 f2cc606 d919708 5e980fd 01237fb d919708 d28afad d919708 5e980fd 87b09dd 493a4a6 87b09dd 493a4a6 87b09dd 493a4a6 87b09dd 493a4a6 87b09dd 493a4a6 87b09dd 493a4a6 87b09dd 493a4a6 87b09dd 493a4a6 87b09dd 493a4a6 87b09dd 493a4a6 87b09dd 493a4a6 87b09dd 493a4a6 87b09dd f46462b 5da2025 f46462b 5da2025 dcad397 87b09dd 493a4a6 87b09dd 493a4a6 87b09dd f53960f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 |
# api/endpoints.py
# SPDX-FileCopyrightText: Hadad <hadad@linuxmail.org>
# SPDX-License-Identifier: Apache-2.0
import os
import uuid
from fastapi import APIRouter, Depends, HTTPException, Request, status, UploadFile, File , Body
from fastapi.responses import StreamingResponse
from api.database import User, Conversation, Message
from api.models import QueryRequest, ConversationOut, ConversationCreate, UserUpdate
from api.auth import current_active_user
from api.database import get_db
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy import select, delete
from utils.generation import request_generation, select_model, check_model_availability
from utils.web_search import web_search
import io
import asyncio
import json
from openai import OpenAI
from motor.motor_asyncio import AsyncIOMotorClient
from datetime import datetime
import logging
from typing import List, Optional
# from utils.constants import MODEL_ALIASES, MODEL_NAME, SECONDARY_MODEL_NAME, TERTIARY_MODEL_NAME, CLIP_BASE_MODEL, CLIP_LARGE_MODEL, ASR_MODEL, TTS_MODEL, IMAGE_GEN_MODEL, SECONDARY_IMAGE_GEN_MODEL
from utils.constants import MODEL_ALIASES, MODEL_NAME, SECONDARY_MODEL_NAME, TERTIARY_MODEL_NAME, CLIP_BASE_MODEL, CLIP_LARGE_MODEL, ASR_MODEL, TTS_MODEL, IMAGE_GEN_MODEL, SECONDARY_IMAGE_GEN_MODEL, IMAGE_INFERENCE_API
import psutil
import time
router = APIRouter()
from pydantic import BaseModel
logger = logging.getLogger(__name__)
# Check HF_TOKEN and BACKUP_HF_TOKEN
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
logger.error("HF_TOKEN is not set in environment variables.")
raise ValueError("HF_TOKEN is required for Inference API.")
BACKUP_HF_TOKEN = os.getenv("BACKUP_HF_TOKEN")
if not BACKUP_HF_TOKEN:
logger.warning("BACKUP_HF_TOKEN is not set. Fallback to secondary model will not work if primary token fails.")
ROUTER_API_URL = os.getenv("ROUTER_API_URL", "https://router.huggingface.co")
API_ENDPOINT = os.getenv("API_ENDPOINT", "https://router.huggingface.co/v1")
FALLBACK_API_ENDPOINT = os.getenv("FALLBACK_API_ENDPOINT", "https://api-inference.huggingface.co/v1")
# MongoDB setup
MONGO_URI = os.getenv("MONGODB_URI")
client = AsyncIOMotorClient(MONGO_URI)
db = client["hager"]
session_message_counts = db["session_message_counts"]
class ImageGenRequest(BaseModel):
prompt: str
output_format: str = "image"
# Helper function to handle sessions for non-logged-in users
async def handle_session(request: Request):
if not hasattr(request, "session"):
raise HTTPException(status_code=500, detail="Session middleware not configured")
session_id = request.session.get("session_id")
if not session_id:
session_id = str(uuid.uuid4())
request.session["session_id"] = session_id
await session_message_counts.insert_one({"session_id": session_id, "message_count": 0})
session_doc = await session_message_counts.find_one({"session_id": session_id})
if not session_doc:
session_doc = {"session_id": session_id, "message_count": 0}
await session_message_counts.insert_one(session_doc)
message_count = session_doc["message_count"] + 1
await session_message_counts.update_one(
{"session_id": session_id},
{"$set": {"message_count": message_count}}
)
if message_count > 4:
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail="Message limit reached. Please log in to continue."
)
return session_id
# Helper function to enhance system prompt for Arabic language
def enhance_system_prompt(system_prompt: str, message: str, user: Optional[User] = None) -> str:
enhanced_prompt = system_prompt
if any(0x0600 <= ord(char) <= 0x06FF for char in message):
enhanced_prompt += "\nRespond in Arabic with clear, concise, and accurate information tailored to the user's query."
if user and user.additional_info:
enhanced_prompt += f"\nUser Profile: {user.additional_info}\nConversation Style: {user.conversation_style or 'default'}"
return enhanced_prompt
@router.get("/api/settings")
async def get_settings(user: User = Depends(current_active_user)):
if not user:
raise HTTPException(status_code=401, detail="Login required")
return {
"available_models": [
{"alias": "advanced", "description": "High-performance model for complex queries"},
{"alias": "standard", "description": "Balanced model for general use"},
{"alias": "light", "description": "Lightweight model for quick responses"}
],
"conversation_styles": ["default", "concise", "analytical", "creative"],
"user_settings": {
"display_name": user.display_name,
"preferred_model": user.preferred_model,
"job_title": user.job_title,
"education": user.education,
"interests": user.interests,
"additional_info": user.additional_info,
"conversation_style": user.conversation_style
}
}
@router.get("/api/model-info")
async def model_info():
return {
"available_models": [
{"alias": "advanced", "description": "High-performance model for complex queries"},
{"alias": "standard", "description": "Balanced model for general use"},
{"alias": "light", "description": "Lightweight model for quick responses"},
{"alias": "image_base", "description": "Basic image analysis model"},
{"alias": "image_advanced", "description": "Advanced image analysis model"},
{"alias": "audio", "description": "Audio transcription model (default)"},
{"alias": "tts", "description": "Text-to-speech model (default)"}
],
"api_base": API_ENDPOINT,
"fallback_api_base": FALLBACK_API_ENDPOINT,
"status": "online"
}
@router.get("/api/performance")
async def performance_stats():
return {
"queue_size": int(os.getenv("QUEUE_SIZE", 80)),
"concurrency_limit": int(os.getenv("CONCURRENCY_LIMIT", 20)),
"uptime": time.time() - psutil.boot_time() # مدة تشغيل النظام بالثواني
}
@router.post("/api/chat")
async def chat_endpoint(
request: Request,
req: QueryRequest,
user: User = Depends(current_active_user),
db: AsyncSession = Depends(get_db)
):
logger.info(f"Received chat request: {req}")
if not user:
await handle_session(request)
conversation = None
if user:
title = req.title or (req.message[:50] + "..." if len(req.message) > 50 else req.message or "Untitled Conversation")
result = await db.execute(
select(Conversation).filter(Conversation.user_id == user.id).order_by(Conversation.updated_at.desc())
)
conversation = result.scalar_one_or_none()
if not conversation:
conversation_id = str(uuid.uuid4())
conversation = Conversation(
conversation_id=conversation_id,
user_id=user.id,
title=title
)
db.add(conversation)
await db.commit()
await db.refresh(conversation)
user_msg = Message(role="user", content=req.message, conversation_id=conversation.id)
db.add(user_msg)
await db.commit()
preferred_model = user.preferred_model if user else None
model_name, api_endpoint = select_model(req.message, input_type="text", preferred_model=preferred_model)
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
if not is_available:
logger.warning(f"Model {model_name} is not available at {api_endpoint}, trying fallback model.")
model_name = SECONDARY_MODEL_NAME
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
if not is_available:
logger.error(f"Fallback model {model_name} is not available at {selected_endpoint}")
raise HTTPException(status_code=503, detail=f"No available models. Tried {MODEL_NAME} and {SECONDARY_MODEL_NAME}.")
system_prompt = enhance_system_prompt(req.system_prompt, req.message, user)
stream = request_generation(
api_key=api_key,
api_base=selected_endpoint,
message=req.message,
system_prompt=system_prompt,
model_name=model_name,
chat_history=req.history,
temperature=req.temperature,
max_new_tokens=req.max_new_tokens or 2048,
deep_search=req.enable_browsing,
input_type="text",
output_format=req.output_format
)
if req.output_format == "audio":
audio_chunks = []
try:
for chunk in stream:
logger.debug(f"Processing audio chunk: {chunk[:100] if isinstance(chunk, str) else 'bytes'}")
if isinstance(chunk, bytes):
audio_chunks.append(chunk)
else:
logger.warning(f"Unexpected non-bytes chunk in audio stream: {chunk}")
if not audio_chunks:
logger.error("No audio data generated.")
raise HTTPException(status_code=502, detail="No audio data generated. Model may be unavailable.")
audio_data = b"".join(audio_chunks)
return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
except Exception as e:
logger.error(f"Audio generation failed: {e}")
raise HTTPException(status_code=502, detail=f"Audio generation failed: {str(e)}")
async def stream_response():
response_chunks = []
try:
for chunk in stream:
if isinstance(chunk, str) and chunk.strip() and chunk not in ["analysis", "assistantfinal"]:
response_chunks.append(chunk)
yield chunk.encode('utf-8') # إرسال الـ chunk مباشرةً
await asyncio.sleep(0.05) # تأخير بسيط لمحاكاة الكتابة
else:
logger.warning(f"Skipping chunk: {chunk}")
response = "".join(response_chunks)
if not response.strip():
logger.warning(f"Empty response from {model_name}. Trying fallback model {SECONDARY_MODEL_NAME}.")
model_name = SECONDARY_MODEL_NAME
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
if not is_available:
logger.error(f"Fallback model {model_name} is not available at {selected_endpoint}")
yield f"Error: No available models. Tried {MODEL_NAME} and {SECONDARY_MODEL_NAME}.".encode('utf-8')
return
stream = request_generation(
api_key=api_key,
api_base=selected_endpoint,
message=req.message,
system_prompt=system_prompt,
model_name=model_name,
chat_history=req.history,
temperature=req.temperature,
max_new_tokens=req.max_new_tokens or 2048,
deep_search=req.enable_browsing,
input_type="text",
output_format=req.output_format
)
response_chunks = []
for chunk in stream:
if isinstance(chunk, str) and chunk.strip() and chunk not in ["analysis", "assistantfinal"]:
response_chunks.append(chunk)
yield chunk.encode('utf-8')
await asyncio.sleep(0.05)
else:
logger.warning(f"Skipping fallback chunk: {chunk}")
response = "".join(response_chunks)
if not response.strip():
logger.error(f"Empty response from fallback model {model_name}.")
yield f"Error: Empty response from both {MODEL_NAME} and {SECONDARY_MODEL_NAME}.".encode('utf-8')
return
if user and conversation:
assistant_msg = Message(role="assistant", content=response, conversation_id=conversation.id)
db.add(assistant_msg)
await db.commit()
conversation.updated_at = datetime.utcnow()
await db.commit()
yield json.dumps({
"conversation_id": conversation.conversation_id,
"conversation_url": f"https://mgzon-mgzon-app.hf.space/chat/{conversation.conversation_id}",
"conversation_title": conversation.title
}, ensure_ascii=False).encode('utf-8')
except Exception as e:
logger.error(f"Chat generation failed: {e}")
yield f"Error: Chat generation failed: {str(e)}".encode('utf-8')
return StreamingResponse(stream_response(), media_type="text/plain")
@router.post("/api/image-generation")
async def image_generation_endpoint(
request: Request,
req: dict,
file: Optional[UploadFile] = File(None),
user: User = Depends(current_active_user),
db: AsyncSession = Depends(get_db)
):
if not user:
await handle_session(request)
prompt = req.get("prompt", "")
output_format = req.get("output_format", "image")
if not prompt.strip():
raise HTTPException(status_code=400, detail="Prompt is required for image generation.")
model_name, api_endpoint = select_model(prompt, input_type="image_gen")
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
if not is_available:
logger.error(f"Model {model_name} is not available at {api_endpoint}")
raise HTTPException(status_code=503, detail=f"Model {model_name} is not available. Please try another model.")
image_data = None
if file:
image_data = await file.read()
system_prompt = enhance_system_prompt(
"You are an expert in generating high-quality images based on detailed prompts. Ensure the output is visually appealing and matches the user's description.",
prompt, user
)
stream = request_generation(
api_key=api_key,
api_base=selected_endpoint,
message=prompt,
system_prompt=system_prompt,
model_name=model_name,
temperature=0.7,
max_new_tokens=2048,
input_type="image_gen",
image_data=image_data,
output_format=output_format
)
if output_format == "image":
image_chunks = []
try:
for chunk in stream:
logger.debug(f"Processing image chunk: {chunk[:100] if isinstance(chunk, str) else 'bytes'}")
if isinstance(chunk, bytes):
image_chunks.append(chunk)
else:
logger.warning(f"Unexpected non-bytes chunk in image stream: {chunk}")
if not image_chunks:
logger.error("No image data generated.")
raise HTTPException(status_code=500, detail="No image data generated for image generation.")
image_data = b"".join(image_chunks)
return StreamingResponse(io.BytesIO(image_data), media_type="image/png")
except Exception as e:
logger.error(f"Image generation failed: {e}")
raise HTTPException(status_code=500, detail=f"Image generation failed: {str(e)}")
response_chunks = []
try:
for chunk in stream:
logger.debug(f"Processing text chunk: {chunk[:100]}...")
if isinstance(chunk, str) and chunk.strip() and chunk not in ["analysis", "assistantfinal"]:
response_chunks.append(chunk)
else:
logger.warning(f"Skipping chunk: {chunk}")
response = "".join(response_chunks)
if not response.strip():
logger.error("Empty response generated.")
raise HTTPException(status_code=500, detail="Empty response generated from model.")
return {"response": response}
except Exception as e:
logger.error(f"Image generation failed: {e}")
raise HTTPException(status_code=500, detail=f"Image generation failed: {str(e)}")
@router.post("/api/audio-transcription")
async def audio_transcription_endpoint(
request: Request,
file: UploadFile = File(...),
user: User = Depends(current_active_user),
db: AsyncSession = Depends(get_db)
):
logger.info(f"Received audio transcription request for file: {file.filename}")
if not user:
await handle_session(request)
conversation = None
if user:
title = "Audio Transcription"
result = await db.execute(
select(Conversation).filter(Conversation.user_id == user.id).order_by(Conversation.updated_at.desc())
)
conversation = result.scalar_one_or_none()
if not conversation:
conversation_id = str(uuid.uuid4())
conversation = Conversation(
conversation_id=conversation_id,
user_id=user.id,
title=title
)
db.add(conversation)
await db.commit()
await db.refresh(conversation)
user_msg = Message(role="user", content="Audio message", conversation_id=conversation.id)
db.add(user_msg)
await db.commit()
model_name, api_endpoint = select_model("transcribe audio", input_type="audio")
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
if not is_available:
logger.error(f"Model {model_name} is not available at {api_endpoint}")
raise HTTPException(status_code=503, detail=f"Model {model_name} is not available. Please try another model.")
audio_data = await file.read()
stream = request_generation(
api_key=api_key,
api_base=selected_endpoint,
message="Transcribe audio",
system_prompt="Transcribe the provided audio using Whisper. Ensure accurate transcription in the detected language.",
model_name=model_name,
temperature=0.7,
max_new_tokens=2048,
input_type="audio",
audio_data=audio_data,
output_format="text"
)
response_chunks = []
try:
for chunk in stream:
logger.debug(f"Processing transcription chunk: {chunk[:100]}...")
if isinstance(chunk, str):
response_chunks.append(chunk)
else:
logger.warning(f"Unexpected non-string chunk in transcription stream: {chunk}")
response = "".join(response_chunks)
if not response.strip():
logger.error("Empty transcription generated.")
raise HTTPException(status_code=500, detail="Empty transcription generated from model.")
logger.info(f"Audio transcription response: {response[:100]}...")
except Exception as e:
logger.error(f"Audio transcription failed: {e}")
raise HTTPException(status_code=500, detail=f"Audio transcription failed: {str(e)}")
if user and conversation:
assistant_msg = Message(role="assistant", content=response, conversation_id=conversation.id)
db.add(assistant_msg)
await db.commit()
conversation.updated_at = datetime.utcnow()
await db.commit()
return {
"transcription": response,
"conversation_id": conversation.conversation_id,
"conversation_url": f"https://mgzon-mgzon-app.hf.space/chat/{conversation.conversation_id}",
"conversation_title": conversation.title
}
return {"transcription": response}
@router.post("/api/text-to-speech")
async def text_to_speech_endpoint(
request: Request,
req: dict,
user: User = Depends(current_active_user),
db: AsyncSession = Depends(get_db)
):
if not user:
await handle_session(request)
text = req.get("text", "")
if not text.strip():
raise HTTPException(status_code=400, detail="Text input is required for text-to-speech.")
model_name, api_endpoint = select_model("text to speech", input_type="tts")
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
if not is_available:
logger.error(f"Model {model_name} is not available at {api_endpoint}")
raise HTTPException(status_code=503, detail=f"Model {model_name} is not available. Please try another model.")
stream = request_generation(
api_key=api_key,
api_base=selected_endpoint,
message=text,
system_prompt="Convert the provided text to speech using a text-to-speech model. Ensure clear and natural pronunciation, especially for Arabic text.",
model_name=model_name,
temperature=0.7,
max_new_tokens=2048,
input_type="tts",
output_format="audio"
)
audio_chunks = []
try:
for chunk in stream:
logger.debug(f"Processing TTS chunk: {chunk[:100] if isinstance(chunk, str) else 'bytes'}")
if isinstance(chunk, bytes):
audio_chunks.append(chunk)
else:
logger.warning(f"Unexpected non-bytes chunk in TTS stream: {chunk}")
if not audio_chunks:
logger.error("No audio data generated for TTS.")
raise HTTPException(status_code=500, detail="No audio data generated for text-to-speech.")
audio_data = b"".join(audio_chunks)
return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
except Exception as e:
logger.error(f"Text-to-speech generation failed: {e}")
raise HTTPException(status_code=500, detail=f"Text-to-speech generation failed: {str(e)}")
@router.post("/api/code")
async def code_endpoint(
request: Request,
req: dict,
user: User = Depends(current_active_user),
db: AsyncSession = Depends(get_db)
):
if not user:
await handle_session(request)
framework = req.get("framework")
task = req.get("task")
code = req.get("code", "")
output_format = req.get("output_format", "text")
if not task:
raise HTTPException(status_code=400, detail="Task description is required.")
prompt = f"Generate code for task: {task} using {framework}. Existing code: {code}"
preferred_model = user.preferred_model if user else None
model_name, api_endpoint = select_model(prompt, input_type="text", preferred_model=preferred_model)
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
if not is_available:
logger.error(f"Model {model_name} is not available at {api_endpoint}")
raise HTTPException(status_code=503, detail=f"Model {model_name} is not available. Please try another model.")
system_prompt = enhance_system_prompt(
"You are a coding expert. Provide detailed, well-commented code with examples and explanations.",
prompt, user
)
stream = request_generation(
api_key=api_key,
api_base=selected_endpoint,
message=prompt,
system_prompt=system_prompt,
model_name=model_name,
temperature=0.7,
max_new_tokens=2048,
input_type="text",
output_format=output_format
)
if output_format == "audio":
audio_chunks = []
try:
for chunk in stream:
logger.debug(f"Processing code audio chunk: {chunk[:100] if isinstance(chunk, str) else 'bytes'}")
if isinstance(chunk, bytes):
audio_chunks.append(chunk)
else:
logger.warning(f"Unexpected non-bytes chunk in code audio stream: {chunk}")
if not audio_chunks:
logger.error("No audio data generated for code.")
raise HTTPException(status_code=500, detail="No audio data generated for code.")
audio_data = b"".join(audio_chunks)
return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
except Exception as e:
logger.error(f"Code audio generation failed: {e}")
raise HTTPException(status_code=500, detail=f"Code audio generation failed: {str(e)}")
response_chunks = []
try:
for chunk in stream:
logger.debug(f"Processing code text chunk: {chunk[:100]}...")
if isinstance(chunk, str) and chunk.strip() and chunk not in ["analysis", "assistantfinal"]:
response_chunks.append(chunk)
else:
logger.warning(f"Skipping code chunk: {chunk}")
response = "".join(response_chunks)
if not response.strip():
logger.error("Empty code response generated.")
raise HTTPException(status_code=500, detail="Empty code response generated from model.")
return {"generated_code": response}
except Exception as e:
logger.error(f"Code generation failed: {e}")
raise HTTPException(status_code=500, detail=f"Code generation failed: {str(e)}")
@router.post("/api/analysis")
async def analysis_endpoint(
request: Request,
req: dict,
user: User = Depends(current_active_user),
db: AsyncSession = Depends(get_db)
):
if not user:
await handle_session(request)
message = req.get("text", "")
output_format = req.get("output_format", "text")
if not message.strip():
raise HTTPException(status_code=400, detail="Text input is required for analysis.")
preferred_model = user.preferred_model if user else None
model_name, api_endpoint = select_model(message, input_type="text", preferred_model=preferred_model)
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
if not is_available:
logger.error(f"Model {model_name} is not available at {api_endpoint}")
raise HTTPException(status_code=503, detail=f"Model {model_name} is not available. Please try another model.")
system_prompt = enhance_system_prompt(
"You are an expert analyst. Provide detailed analysis with step-by-step reasoning and examples.",
message, user
)
stream = request_generation(
api_key=api_key,
api_base=selected_endpoint,
message=message,
system_prompt=system_prompt,
model_name=model_name,
temperature=0.7,
max_new_tokens=2048,
input_type="text",
output_format=output_format
)
if output_format == "audio":
audio_chunks = []
try:
for chunk in stream:
logger.debug(f"Processing analysis audio chunk: {chunk[:100] if isinstance(chunk, str) else 'bytes'}")
if isinstance(chunk, bytes):
audio_chunks.append(chunk)
else:
logger.warning(f"Unexpected non-bytes chunk in analysis audio stream: {chunk}")
if not audio_chunks:
logger.error("No audio data generated for analysis.")
raise HTTPException(status_code=500, detail="No audio data generated for analysis.")
audio_data = b"".join(audio_chunks)
return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
except Exception as e:
logger.error(f"Analysis audio generation failed: {e}")
raise HTTPException(status_code=500, detail=f"Analysis audio generation failed: {str(e)}")
response_chunks = []
try:
for chunk in stream:
logger.debug(f"Processing analysis text chunk: {chunk[:100]}...")
if isinstance(chunk, str) and chunk.strip() and chunk not in ["analysis", "assistantfinal"]:
response_chunks.append(chunk)
else:
logger.warning(f"Skipping analysis chunk: {chunk}")
response = "".join(response_chunks)
if not response.strip():
logger.error("Empty analysis response generated.")
raise HTTPException(status_code=500, detail="Empty analysis response generated from model.")
return {"analysis": response}
except Exception as e:
logger.error(f"Analysis generation failed: {e}")
raise HTTPException(status_code=500, detail=f"Analysis generation failed: {str(e)}")
@router.post("/api/image-analysis")
async def image_analysis_endpoint(
request: Request,
file: UploadFile = File(...),
output_format: str = "text",
user: User = Depends(current_active_user),
db: AsyncSession = Depends(get_db)
):
if not user:
await handle_session(request)
conversation = None
if user:
title = "Image Analysis"
result = await db.execute(
select(Conversation).filter(Conversation.user_id == user.id).order_by(Conversation.updated_at.desc())
)
conversation = result.scalar_one_or_none()
if not conversation:
conversation_id = str(uuid.uuid4())
conversation = Conversation(
conversation_id=conversation_id,
user_id=user.id,
title=title
)
db.add(conversation)
await db.commit()
await db.refresh(conversation)
user_msg = Message(role="user", content="Image analysis request", conversation_id=conversation.id)
db.add(user_msg)
await db.commit()
preferred_model = user.preferred_model if user else None
model_name, api_endpoint = select_model("analyze image", input_type="image", preferred_model=preferred_model)
is_available, api_key, selected_endpoint = check_model_availability(model_name, HF_TOKEN)
if not is_available:
logger.error(f"Model {model_name} is not available at {api_endpoint}")
raise HTTPException(status_code=503, detail=f"Model {model_name} is not available. Please try another model.")
image_data = await file.read()
system_prompt = enhance_system_prompt(
"You are an expert in image analysis. Provide detailed descriptions or classifications based on the query.",
"Analyze this image", user
)
stream = request_generation(
api_key=api_key,
api_base=selected_endpoint,
message="Analyze this image",
system_prompt=system_prompt,
model_name=model_name,
temperature=0.7,
max_new_tokens=2048,
input_type="image",
image_data=image_data,
output_format=output_format
)
if output_format == "audio":
audio_chunks = []
try:
for chunk in stream:
logger.debug(f"Processing image analysis audio chunk: {chunk[:100] if isinstance(chunk, str) else 'bytes'}")
if isinstance(chunk, bytes):
audio_chunks.append(chunk)
else:
logger.warning(f"Unexpected non-bytes chunk in image analysis audio stream: {chunk}")
if not audio_chunks:
logger.error("No audio data generated for image analysis.")
raise HTTPException(status_code=500, detail="No audio data generated for image analysis.")
audio_data = b"".join(audio_chunks)
return StreamingResponse(io.BytesIO(audio_data), media_type="audio/wav")
except Exception as e:
logger.error(f"Image analysis audio generation failed: {e}")
raise HTTPException(status_code=500, detail=f"Image analysis audio generation failed: {str(e)}")
response_chunks = []
try:
for chunk in stream:
logger.debug(f"Processing image analysis text chunk: {chunk[:100]}...")
if isinstance(chunk, str) and chunk.strip() and chunk not in ["analysis", "assistantfinal"]:
response_chunks.append(chunk)
else:
logger.warning(f"Skipping image analysis chunk: {chunk}")
response = "".join(response_chunks)
if not response.strip():
logger.error("Empty image analysis response generated.")
raise HTTPException(status_code=500, detail="Empty image analysis response generated from model.")
if user and conversation:
assistant_msg = Message(role="assistant", content=response, conversation_id=conversation.id)
db.add(assistant_msg)
await db.commit()
conversation.updated_at = datetime.utcnow()
await db.commit()
return {
"image_analysis": response,
"conversation_id": conversation.conversation_id,
"conversation_url": f"https://mgzon-mgzon-app.hf.space/chat/{conversation.conversation_id}",
"conversation_title": conversation.title
}
return {"image_analysis": response}
except Exception as e:
logger.error(f"Image analysis failed: {e}")
raise HTTPException(status_code=500, detail=f"Image analysis failed: {str(e)}")
@router.get("/api/test-model")
async def test_model(model: str = MODEL_NAME, endpoint: str = API_ENDPOINT):
try:
is_available, api_key, selected_endpoint = check_model_availability(model, HF_TOKEN)
if not is_available:
logger.error(f"Model {model} is not available at {endpoint}")
raise HTTPException(status_code=503, detail=f"Model {model} is not available.")
client = OpenAI(api_key=api_key, base_url=selected_endpoint, timeout=60.0)
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": "Test"}],
max_tokens=50
)
logger.debug(f"Test model response: {response.choices[0].message.content}")
return {"status": "success", "response": response.choices[0].message.content}
except Exception as e:
logger.error(f"Test model failed: {e}")
raise HTTPException(status_code=500, detail=f"Test model failed: {str(e)}")
@router.post("/api/conversations", response_model=ConversationOut)
async def create_conversation(
req: ConversationCreate,
user: User = Depends(current_active_user),
db: AsyncSession = Depends(get_db)
):
if not user:
raise HTTPException(status_code=401, detail="Login required")
conversation_id = str(uuid.uuid4())
conversation = Conversation(
conversation_id=conversation_id,
title=req.title or "Untitled Conversation",
user_id=user.id
)
db.add(conversation)
await db.commit()
await db.refresh(conversation)
return ConversationOut.from_orm(conversation)
@router.get("/api/conversations/{conversation_id}", response_model=ConversationOut)
async def get_conversation(
conversation_id: str,
user: User = Depends(current_active_user),
db: AsyncSession = Depends(get_db)
):
if not user:
raise HTTPException(status_code=401, detail="Login required")
result = await db.execute(
select(Conversation).filter(
Conversation.conversation_id == conversation_id,
Conversation.user_id == user.id
)
)
conversation = result.scalar_one_or_none()
if not conversation:
raise HTTPException(status_code=404, detail="Conversation not found")
return ConversationOut.from_orm(conversation)
@router.get("/api/conversations", response_model=List[ConversationOut])
async def list_conversations(
user: User = Depends(current_active_user),
db: AsyncSession = Depends(get_db)
):
if not user:
raise HTTPException(status_code=401, detail="Login required")
result = await db.execute(
select(Conversation).filter(Conversation.user_id == user.id).order_by(Conversation.created_at.desc())
)
conversations = result.scalars().all()
return [ConversationOut.from_orm(conv) for conv in conversations]
@router.put("/api/conversations/{conversation_id}/title")
async def update_conversation_title(
conversation_id: str,
title: str,
user: User = Depends(current_active_user),
db: AsyncSession = Depends(get_db)
):
if not user:
raise HTTPException(status_code=401, detail="Login required")
result = await db.execute(
select(Conversation).filter(
Conversation.conversation_id == conversation_id,
Conversation.user_id == user.id
)
)
conversation = result.scalar_one_or_none()
if not conversation:
raise HTTPException(status_code=404, detail="Conversation not found")
conversation.title = title
conversation.updated_at = datetime.utcnow()
await db.commit()
return {"message": "Conversation title updated", "title": conversation.title}
@router.delete("/api/conversations/{conversation_id}")
async def delete_conversation(
conversation_id: str,
user: User = Depends(current_active_user),
db: AsyncSession = Depends(get_db)
):
if not user:
raise HTTPException(status_code=401, detail="Login required")
result = await db.execute(
select(Conversation).filter(
Conversation.conversation_id == conversation_id,
Conversation.user_id == user.id
)
)
conversation = result.scalar_one_or_none()
if not conversation:
raise HTTPException(status_code=404, detail="Conversation not found")
await db.execute(delete(Message).filter(Message.conversation_id == conversation.id))
await db.delete(conversation)
await db.commit()
return {"message": "Conversation deleted successfully"}
@router.get("/users/me")
async def get_user_settings(user: User = Depends(current_active_user)):
if not user:
raise HTTPException(status_code=401, detail="Login required")
return {
"id": user.id,
"email": user.email,
"display_name": user.display_name,
"preferred_model": user.preferred_model,
"job_title": user.job_title,
"education": user.education,
"interests": user.interests,
"additional_info": user.additional_info,
"conversation_style": user.conversation_style,
"is_active": user.is_active,
"is_superuser": user.is_superuser
}
@router.get("/api/verify-token")
async def verify_token(user: User = Depends(current_active_user)):
if not user:
raise HTTPException(status_code=401, detail="Invalid or expired token")
return {
"status": "valid",
"user": {
"id": user.id,
"email": user.email,
"is_active": user.is_active
}
}
@router.put("/users/me")
async def update_user_settings(
settings: UserUpdate,
user: User = Depends(current_active_user),
db: AsyncSession = Depends(get_db)
):
if not user:
raise HTTPException(status_code=401, detail="Login required")
if settings.preferred_model and settings.preferred_model not in MODEL_ALIASES:
raise HTTPException(status_code=400, detail="Invalid model alias")
if settings.display_name is not None:
user.display_name = settings.display_name
if settings.preferred_model is not None:
user.preferred_model = settings.preferred_model
if settings.job_title is not None:
user.job_title = settings.job_title
if settings.education is not None:
user.education = settings.education
if settings.interests is not None:
user.interests = settings.interests
if settings.additional_info is not None:
user.additional_info = settings.additional_info
if settings.conversation_style is not None:
user.conversation_style = settings.conversation_style
await db.commit()
await db.refresh(user)
return {"message": "Settings updated successfully", "user": {
"id": user.id,
"email": user.email,
"display_name": user.display_name,
"preferred_model": user.preferred_model,
"job_title": user.job_title,
"education": user.education,
"interests": user.interests,
"additional_info": user.additional_info,
"conversation_style": user.conversation_style,
"is_active": user.is_active,
"is_superuser": user.is_superuser
}}
@router.post("/api/conversations/sync", response_model=ConversationOut)
async def sync_conversation(
request: Request,
payload: dict = Body(...),
user: User = Depends(current_active_user),
db: AsyncSession = Depends(get_db)
):
if not user:
raise HTTPException(status_code=401, detail="Login required")
messages = payload.get("messages", [])
title = payload.get("title", "Untitled Conversation")
conversation_id = payload.get("conversation_id")
logger.info(f"Syncing conversation for user {user.email}, conversation_id: {conversation_id}")
try:
# Check if conversation exists
if conversation_id:
result = await db.execute(
select(Conversation).filter(
Conversation.conversation_id == conversation_id,
Conversation.user_id == user.id
)
)
conversation = result.scalar_one_or_none()
if not conversation:
raise HTTPException(status_code=404, detail="Conversation not found")
# Update existing conversation
conversation.title = title
conversation.updated_at = datetime.utcnow()
# Delete old messages
await db.execute(
delete(Message).filter(Message.conversation_id == conversation.id)
)
# Add new messages
for msg in messages:
new_message = Message(
conversation_id=conversation.id,
role=msg.get("role", "user"),
content=msg.get("content", ""),
created_at=datetime.utcnow()
)
db.add(new_message)
await db.commit()
await db.refresh(conversation)
logger.info(f"Updated conversation {conversation_id} for user {user.email}")
else:
# Create new conversation
conversation_id = str(uuid.uuid4())
conversation = Conversation(
conversation_id=conversation_id,
user_id=user.id,
title=title,
created_at=datetime.utcnow(),
updated_at=datetime.utcnow()
)
db.add(conversation)
await db.commit()
await db.refresh(conversation)
# Add messages
for msg in messages:
new_message = Message(
conversation_id=conversation.id,
role=msg.get("role", "user"),
content=msg.get("content", ""),
created_at=datetime.utcnow()
)
db.add(new_message)
await db.commit()
logger.info(f"Created new conversation {conversation_id} for user {user.email}")
return ConversationOut.from_orm(conversation)
except Exception as e:
logger.error(f"Error syncing conversation: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to sync conversation: {str(e)}")
|