MELABench / src /leaderboard /read_evals.py
KurtMica's picture
Separate zero-shot & few-shot results.
17ca318
import glob
import json
import os
from collections import defaultdict
from dataclasses import dataclass
from pathlib import Path
import numpy as np
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelTraining, Tasks, Precision, WeightType, MalteseTraining
from src.envs import TOKEN, API
from src.submission.check_validity import is_model_on_hub, get_model_size
@dataclass
class EvalResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
"""
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
precision: Precision = Precision.Unknown
n_shot: int = 0
prompt_version: str = "1.0_english"
seed: int = 0
model_training: ModelTraining = ModelTraining.NK # Pretrained, fine tuned, ...
maltese_training: MalteseTraining = MalteseTraining.NK # none, pre-training, ...
language_count: int = None
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
@classmethod
def init_from_json_files(self, seed_directory):
"""Inits the result from the specific model result file"""
with open(list(seed_directory.values())[0][0]) as fp:
data = json.load(fp)
config = data.get("config")
precision = Precision.from_str(config.get("model_dtype"))
n_shot = config.get("n_shot")
prompt_version = config.get("prompt_version")
seed = config.get("seed")
model_training = ModelTraining.from_str(config.get("model_training"))
maltese_training = MalteseTraining.from_str(config.get("maltese_training"))
language_count = config.get("language_count")
model_size = config.get("model_num_parameters")
# Get model and org
org_and_model = config.get("model", None)
org_and_model = org_and_model.split("/", 1)
full_model = "/".join(org_and_model)
revision = config.get("model_sha", config.get("model_revision", "main"))
model_args = config.get("model_args")
model_args["revision"] = revision
model_args["trust_remote_code"] = True
model_args["cache_dir"] = None
base_model = None
if "pretrained" in model_args:
base_model = model_args.pop("pretrained")
still_on_hub, _, model_config = is_model_on_hub(
base_model or full_model, model_args, test_tokenizer=False, token=TOKEN,
)
architecture = "?"
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
license = "?"
likes = 0
if still_on_hub:
try:
model_info = API.model_info(repo_id=full_model, revision=revision, token=TOKEN)
if not model_size:
model_size = get_model_size(model_info=model_info, precision=precision)
license = model_info.cardData.get("license")
likes = model_info.likes
except Exception:
pass
# Extract results available in this file (some results are split in several files)
results = defaultdict(dict)
for seed, file_paths in seed_directory.items():
for file_path in file_paths:
with open(file_path) as file:
data = json.load(file)["results"]
for task in Tasks:
task = task.value
if task.benchmark not in data or task.metric not in data[task.benchmark]:
continue
score = data[task.benchmark][task.metric]
if task.metric in ("acc", "f1", "loglikelihood", "rouge"):
score *= 100
results[task.benchmark + "_" + task.metric][seed] = score
results = {task: np.mean(list(seed_results.values())) for task, seed_results in results.items()}
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{'_'.join(org_and_model)}_{revision}_{precision.value.name}_{n_shot}_{prompt_version}_{seed}"
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
model_training=model_training,
maltese_training=maltese_training,
language_count=language_count or "?",
precision=precision,
revision=revision,
n_shot=n_shot,
prompt_version=prompt_version,
seed=seed,
still_on_hub=still_on_hub,
architecture=architecture,
likes=likes or "?",
num_params=model_size and round(model_size / 1e9, 3),
license=license,
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_training = ModelTraining.from_str(request.get("model_training", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
except Exception:
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision.value.name,
AutoEvalColumn.n_shot.name: self.n_shot,
AutoEvalColumn.prompt_version.name: self.prompt_version,
AutoEvalColumn.model_training.name: self.model_training.value.name,
AutoEvalColumn.maltese_training.name: self.maltese_training.value.name,
AutoEvalColumn.model_symbol.name: self.model_training.value.symbol + "/" + self.maltese_training.value.symbol,
AutoEvalColumn.language_count.name: self.language_count,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.revision.name: self.revision,
AutoEvalColumn.average.name: average,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
}
results_by_task_type = defaultdict(list)
for task in Tasks:
result = self.results.get(task.value.benchmark + "_" + task.value.metric)
data_dict[task.value.col_name] = result
if task.value.is_primary_metric and not (task.value.zero_shot_only and self.n_shot > 0):
results_by_task_type[task.value.task_type].append(result)
results_averages = []
for task_type, task_type_results in results_by_task_type.items():
average = sum([score for score in task_type_results if score is not None]) / len(task_type_results)
data_dict[getattr(AutoEvalColumn, task_type.value.name).name] = average
results_averages.append(average)
data_dict[AutoEvalColumn.average.name] = np.mean(results_averages) if len(results_averages) > 1 else results_averages[0]
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if (
req_content["status"] in ["FINISHED"]
and req_content["precision"] == precision.split(".")[-1]
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = defaultdict(lambda: defaultdict(list))
for directory_path in Path(results_path).rglob("*/*/"):
for file_path in directory_path.rglob("*-seed/results_*.json"):
seed = file_path.parent.name.removesuffix("-seed")
model_result_filepaths[directory_path.relative_to(results_path)][seed].append(file_path)
eval_results = {}
for model_result_filepath in model_result_filepaths.values():
# Creation of result
eval_result = EvalResult.init_from_json_files(model_result_filepath)
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
return results