Spaces:
Sleeping
Sleeping
| # Copyright 2021 AlQuraishi Laboratory | |
| # Copyright 2021 DeepMind Technologies Limited | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from functools import partial | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint | |
| from typing import Optional, List, Tuple | |
| from dockformerpp.model.primitives import ( | |
| Linear, | |
| LayerNorm, | |
| Attention, | |
| ) | |
| from dockformerpp.utils.tensor_utils import permute_final_dims | |
| class SingleAttention(nn.Module): | |
| def __init__( | |
| self, | |
| c_in, | |
| c_hidden, | |
| no_heads, | |
| pair_bias=False, | |
| c_z=None, | |
| inf=1e9, | |
| ): | |
| """ | |
| Args: | |
| c_in: | |
| Input channel dimension | |
| c_hidden: | |
| Per-head hidden channel dimension | |
| no_heads: | |
| Number of attention heads | |
| pair_bias: | |
| Whether to use pair embedding bias | |
| c_z: | |
| Pair embedding channel dimension. Ignored unless pair_bias | |
| is true | |
| inf: | |
| A large number to be used in computing the attention mask | |
| """ | |
| super(SingleAttention, self).__init__() | |
| self.c_in = c_in | |
| self.c_hidden = c_hidden | |
| self.no_heads = no_heads | |
| self.pair_bias = pair_bias | |
| self.c_z = c_z | |
| self.inf = inf | |
| self.layer_norm_m = LayerNorm(self.c_in) | |
| self.layer_norm_z = None | |
| self.linear_z = None | |
| if self.pair_bias: | |
| self.layer_norm_z = LayerNorm(self.c_z) | |
| self.linear_z = Linear( | |
| self.c_z, self.no_heads, bias=False, init="normal" | |
| ) | |
| self.mha = Attention( | |
| self.c_in, | |
| self.c_in, | |
| self.c_in, | |
| self.c_hidden, | |
| self.no_heads, | |
| ) | |
| def _prep_inputs(self, | |
| m: torch.Tensor, | |
| z: Optional[torch.Tensor], | |
| mask: Optional[torch.Tensor], | |
| inplace_safe: bool = False, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| if mask is None: | |
| # [*, N_res] | |
| mask = m.new_ones(m.shape[:-1]) | |
| # [*, 1, 1, N_res] | |
| mask_bias = (self.inf * (mask - 1))[..., :, None, None, :] | |
| if (self.pair_bias and | |
| z is not None and # For the | |
| self.layer_norm_z is not None and # benefit of | |
| self.linear_z is not None # TorchScript | |
| ): | |
| chunks = [] | |
| for i in range(0, z.shape[-3], 256): | |
| z_chunk = z[..., i: i + 256, :, :] | |
| # [*, N_res, N_res, C_z] | |
| z_chunk = self.layer_norm_z(z_chunk) | |
| # [*, N_res, N_res, no_heads] | |
| z_chunk = self.linear_z(z_chunk) | |
| chunks.append(z_chunk) | |
| z = torch.cat(chunks, dim=-3) | |
| # [*, no_heads, N_res, N_res] | |
| z = permute_final_dims(z, (2, 0, 1)) | |
| return m, mask_bias, z | |
| def forward(self, | |
| m: torch.Tensor, | |
| z: Optional[torch.Tensor] = None, | |
| mask: Optional[torch.Tensor] = None, | |
| use_memory_efficient_kernel: bool = False, | |
| use_lma: bool = False, | |
| inplace_safe: bool = False, | |
| ) -> torch.Tensor: | |
| """ | |
| Args: | |
| m: | |
| [*, N_res, C_m] single embedding | |
| z: | |
| [*, N_res, N_res, C_z] pair embedding. Required only if pair_bias is True | |
| mask: | |
| [*, N_res] single mask | |
| """ | |
| m, mask_bias, z = self._prep_inputs( | |
| m, z, mask, inplace_safe=inplace_safe | |
| ) | |
| biases = [mask_bias] | |
| if(z is not None): | |
| biases.append(z) | |
| m = self.layer_norm_m(m) | |
| m = self.mha( | |
| q_x=m, | |
| kv_x=m, | |
| biases=biases, | |
| use_memory_efficient_kernel=use_memory_efficient_kernel, | |
| use_lma=use_lma, | |
| ) | |
| return m | |
| class SingleRowAttentionWithPairBias(SingleAttention): | |
| """ | |
| Implements Algorithm 7. | |
| """ | |
| def __init__(self, c_m, c_z, c_hidden, no_heads, inf=1e9): | |
| """ | |
| Args: | |
| c_m: | |
| Input channel dimension | |
| c_z: | |
| Pair embedding channel dimension | |
| c_hidden: | |
| Per-head hidden channel dimension | |
| no_heads: | |
| Number of attention heads | |
| inf: | |
| Large number used to construct attention masks | |
| """ | |
| super(SingleRowAttentionWithPairBias, self).__init__( | |
| c_m, | |
| c_hidden, | |
| no_heads, | |
| pair_bias=True, | |
| c_z=c_z, | |
| inf=inf, | |
| ) | |