Spaces:
Sleeping
Sleeping
| import time | |
| import json | |
| import gradio as gr | |
| from gradio_molecule3d import Molecule3D | |
| from run_on_seq import run_on_sample_seqs | |
| from env_consts import RUN_CONFIG_PATH, OUTPUT_PATH | |
| def predict (input_seq_1, input_msa_1, input_protein_1, input_seq_2,input_msa_2, input_protein_2): | |
| start_time = time.time() | |
| # Do inference here | |
| # return an output pdb file with the protein and two chains A and B. | |
| # also return a JSON with any metrics you want to report | |
| # metrics = {"mean_plddt": 80, "binding_affinity": 2} | |
| metrics = {} | |
| run_on_sample_seqs(input_seq_1, input_protein_1, input_seq_2, input_protein_2, OUTPUT_PATH, RUN_CONFIG_PATH) | |
| end_time = time.time() | |
| run_time = end_time - start_time | |
| return OUTPUT_PATH, json.dumps(metrics), run_time | |
| with gr.Blocks() as app: | |
| gr.Markdown("# Template for inference") | |
| gr.Markdown("Title, description, and other information about the model") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_seq_1 = gr.Textbox(lines=3, label="Input Protein 1 sequence (FASTA)") | |
| input_msa_1 = gr.File(label="Input MSA Protein 1 (A3M)") | |
| input_protein_1 = gr.File(label="Input Protein 2 monomer (PDB)") | |
| with gr.Column(): | |
| input_seq_2 = gr.Textbox(lines=3, label="Input Protein 2 sequence (FASTA)") | |
| input_msa_2 = gr.File(label="Input MSA Protein 2 (A3M)") | |
| input_protein_2 = gr.File(label="Input Protein 2 structure (PDB)") | |
| # define any options here | |
| # for automated inference the default options are used | |
| # slider_option = gr.Slider(0,10, label="Slider Option") | |
| # checkbox_option = gr.Checkbox(label="Checkbox Option") | |
| # dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option") | |
| btn = gr.Button("Run Inference") | |
| gr.Examples( | |
| [ | |
| [ | |
| "GSGSPLAQQIKNIHSFIHQAKAAGRMDEVRTLQENLHQLMHEYFQQSD", | |
| "3v1c_A.pdb", | |
| "GSGSPLAQQIKNIHSFIHQAKAAGRMDEVRTLQENLHQLMHEYFQQSD", | |
| "3v1c_B.pdb", | |
| ], | |
| ], | |
| [input_seq_1, input_protein_1, input_seq_2, input_protein_2], | |
| ) | |
| reps = [ | |
| { | |
| "model": 0, | |
| "style": "cartoon", | |
| "chain": "A", | |
| "color": "whiteCarbon", | |
| }, | |
| { | |
| "model": 0, | |
| "style": "cartoon", | |
| "chain": "B", | |
| "color": "greenCarbon", | |
| }, | |
| { | |
| "model": 0, | |
| "chain": "A", | |
| "style": "stick", | |
| "sidechain": True, | |
| "color": "whiteCarbon", | |
| }, | |
| { | |
| "model": 0, | |
| "chain": "B", | |
| "style": "stick", | |
| "sidechain": True, | |
| "color": "greenCarbon" | |
| } | |
| ] | |
| # outputs | |
| out = Molecule3D(reps=reps) | |
| metrics = gr.JSON(label="Metrics") | |
| run_time = gr.Textbox(label="Runtime") | |
| btn.click(predict, inputs=[input_seq_1, input_msa_1, input_protein_1, input_seq_2, input_msa_2, input_protein_2], outputs=[out, metrics, run_time]) | |
| app.launch() | |