Spaces:
Runtime error
Runtime error
Update inference_app.py
Browse files- inference_app.py +30 -18
inference_app.py
CHANGED
|
@@ -87,7 +87,28 @@ def run_smina(
|
|
| 87 |
)
|
| 88 |
return output_text
|
| 89 |
|
| 90 |
-
def predict (input_sequence, input_ligand, input_protein):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
start_time = time.time()
|
| 92 |
|
| 93 |
if input_protein==None:
|
|
@@ -102,6 +123,7 @@ def predict (input_sequence, input_ligand, input_protein):
|
|
| 102 |
|
| 103 |
os.system(f"obabel {input_protein.name} -xr -O /usr/src/app/receptor.pdbqt")
|
| 104 |
os.system("obabel -isdf /usr/src/app/ligand.sdf -O /usr/src/app/ligand.pdbqt")
|
|
|
|
| 105 |
#Find pocket
|
| 106 |
pdb = md.load(input_protein.name)
|
| 107 |
# run ligsite
|
|
@@ -110,23 +132,15 @@ def predict (input_sequence, input_ligand, input_protein):
|
|
| 110 |
min_samples_value = 5
|
| 111 |
dbscan = DBSCAN(eps=eps_value, min_samples=min_samples_value)
|
| 112 |
labels = dbscan.fit_predict(pockets_xyz)
|
| 113 |
-
|
| 114 |
# Find the unique clusters and their sizes
|
| 115 |
unique_labels, counts = np.unique(labels, return_counts=True)
|
| 116 |
-
|
| 117 |
# Exclude noise points
|
| 118 |
valid_clusters = unique_labels[unique_labels != -1]
|
| 119 |
valid_counts = counts[unique_labels != -1]
|
| 120 |
-
|
| 121 |
# Find the cluster with the most points (highest density)
|
| 122 |
densest_cluster_label = valid_clusters[np.argmax(valid_counts)]
|
| 123 |
densest_cluster_points = pockets_xyz[labels == densest_cluster_label]
|
| 124 |
-
|
| 125 |
-
pocket_center = np.mean(densest_cluster_points, axis=0)
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
import pandas as pd
|
| 129 |
-
|
| 130 |
top_df = pd.DataFrame()
|
| 131 |
top_df['serial'] = list(range(densest_cluster_points.shape[0]))
|
| 132 |
top_df['name'] = 'PK'
|
|
@@ -134,24 +148,22 @@ def predict (input_sequence, input_ligand, input_protein):
|
|
| 134 |
top_df['resSeq'] = list(range(densest_cluster_points.shape[0]))
|
| 135 |
top_df['resName'] = 'PCK'
|
| 136 |
top_df['chainID'] = 0
|
| 137 |
-
|
| 138 |
pocket_top = md.Topology.from_dataframe(top_df, np.array([]))
|
| 139 |
pocket_trj = md.Trajectory(xyz=densest_cluster_points, topology=pocket_top)
|
| 140 |
pocket_trj.save('/usr/src/app/pockets_dense.pdb')
|
| 141 |
-
|
| 142 |
parser = PDBParser()
|
| 143 |
struc = parser.get_structure("X", "/usr/src/app/pockets_dense.pdb")
|
| 144 |
coords = [x.coord for x in struc.get_atoms()]
|
| 145 |
pocket_center = np.mean(coords, axis=0)
|
|
|
|
| 146 |
output_text = run_smina(
|
| 147 |
"/usr/src/app/ligand.pdbqt",
|
| 148 |
"/usr/src/app/receptor.pdbqt",
|
| 149 |
"/usr/src/app/docking_pose.sdf",
|
| 150 |
pocket_center,
|
| 151 |
[10,10,10],
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
end_time = time.time()
|
| 156 |
run_time = end_time - start_time
|
| 157 |
return [input_protein.name,"/usr/src/app/docking_pose.sdf"], run_time
|
|
@@ -170,7 +182,7 @@ with gr.Blocks() as app:
|
|
| 170 |
# define any options here
|
| 171 |
|
| 172 |
# for automated inference the default options are used
|
| 173 |
-
|
| 174 |
# checkbox_option = gr.Checkbox(label="Checkbox Option")
|
| 175 |
# dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")
|
| 176 |
|
|
@@ -181,7 +193,7 @@ with gr.Blocks() as app:
|
|
| 181 |
[
|
| 182 |
"SVKSEYAEAAAVGQEAVAVFNTMKAAFQNGDKEAVAQYLARLASLYTRHEELLNRILEKARREGNKEAVTLMNEFTATFQTGKSIFNAMVAAFKNGDDDSFESYLQALEKVTAKGETLADQIAKAL:SVKSEYAEAAAVGQEAVAVFNTMKAAFQNGDKEAVAQYLARLASLYTRHEELLNRILEKARREGNKEAVTLMNEFTATFQTGKSIFNAMVAAFKNGDDDSFESYLQALEKVTAKGETLADQIAKAL",
|
| 183 |
"COc1ccc(cc1)n2c3c(c(n2)C(=O)N)CCN(C3=O)c4ccc(cc4)N5CCCCC5=O",
|
| 184 |
-
"
|
| 185 |
],
|
| 186 |
],
|
| 187 |
[input_sequence, input_ligand, input_protein],
|
|
@@ -215,6 +227,6 @@ with gr.Blocks() as app:
|
|
| 215 |
out = Molecule3D(reps=reps)
|
| 216 |
run_time = gr.Textbox(label="Runtime")
|
| 217 |
|
| 218 |
-
btn.click(predict, inputs=[input_sequence, input_ligand, input_protein], outputs=[out, run_time])
|
| 219 |
|
| 220 |
app.launch()
|
|
|
|
| 87 |
)
|
| 88 |
return output_text
|
| 89 |
|
| 90 |
+
def predict (input_sequence, input_ligand, input_protein, exhaustiveness):
|
| 91 |
+
"""
|
| 92 |
+
Main prediction function that calls ligsite and smina
|
| 93 |
+
|
| 94 |
+
Parameters
|
| 95 |
+
----------
|
| 96 |
+
input_sequence: str
|
| 97 |
+
monomer sequence
|
| 98 |
+
input_ligand: str
|
| 99 |
+
ligand as SMILES string
|
| 100 |
+
protein_path: gradio.File
|
| 101 |
+
Gradio file object to monomer protein structure as PDB
|
| 102 |
+
exhaustiveness: int
|
| 103 |
+
SMINA parameter
|
| 104 |
+
|
| 105 |
+
Returns
|
| 106 |
+
-------
|
| 107 |
+
output_structures: tuple
|
| 108 |
+
(output_protein, output_ligand_sdf)
|
| 109 |
+
run_time: float
|
| 110 |
+
run time of the program
|
| 111 |
+
"""
|
| 112 |
start_time = time.time()
|
| 113 |
|
| 114 |
if input_protein==None:
|
|
|
|
| 123 |
|
| 124 |
os.system(f"obabel {input_protein.name} -xr -O /usr/src/app/receptor.pdbqt")
|
| 125 |
os.system("obabel -isdf /usr/src/app/ligand.sdf -O /usr/src/app/ligand.pdbqt")
|
| 126 |
+
|
| 127 |
#Find pocket
|
| 128 |
pdb = md.load(input_protein.name)
|
| 129 |
# run ligsite
|
|
|
|
| 132 |
min_samples_value = 5
|
| 133 |
dbscan = DBSCAN(eps=eps_value, min_samples=min_samples_value)
|
| 134 |
labels = dbscan.fit_predict(pockets_xyz)
|
|
|
|
| 135 |
# Find the unique clusters and their sizes
|
| 136 |
unique_labels, counts = np.unique(labels, return_counts=True)
|
|
|
|
| 137 |
# Exclude noise points
|
| 138 |
valid_clusters = unique_labels[unique_labels != -1]
|
| 139 |
valid_counts = counts[unique_labels != -1]
|
|
|
|
| 140 |
# Find the cluster with the most points (highest density)
|
| 141 |
densest_cluster_label = valid_clusters[np.argmax(valid_counts)]
|
| 142 |
densest_cluster_points = pockets_xyz[labels == densest_cluster_label]
|
| 143 |
+
# write cluster to PDB
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
top_df = pd.DataFrame()
|
| 145 |
top_df['serial'] = list(range(densest_cluster_points.shape[0]))
|
| 146 |
top_df['name'] = 'PK'
|
|
|
|
| 148 |
top_df['resSeq'] = list(range(densest_cluster_points.shape[0]))
|
| 149 |
top_df['resName'] = 'PCK'
|
| 150 |
top_df['chainID'] = 0
|
|
|
|
| 151 |
pocket_top = md.Topology.from_dataframe(top_df, np.array([]))
|
| 152 |
pocket_trj = md.Trajectory(xyz=densest_cluster_points, topology=pocket_top)
|
| 153 |
pocket_trj.save('/usr/src/app/pockets_dense.pdb')
|
|
|
|
| 154 |
parser = PDBParser()
|
| 155 |
struc = parser.get_structure("X", "/usr/src/app/pockets_dense.pdb")
|
| 156 |
coords = [x.coord for x in struc.get_atoms()]
|
| 157 |
pocket_center = np.mean(coords, axis=0)
|
| 158 |
+
# run smina
|
| 159 |
output_text = run_smina(
|
| 160 |
"/usr/src/app/ligand.pdbqt",
|
| 161 |
"/usr/src/app/receptor.pdbqt",
|
| 162 |
"/usr/src/app/docking_pose.sdf",
|
| 163 |
pocket_center,
|
| 164 |
[10,10,10],
|
| 165 |
+
exhaustiveness=exhaustiveness
|
| 166 |
+
)
|
|
|
|
| 167 |
end_time = time.time()
|
| 168 |
run_time = end_time - start_time
|
| 169 |
return [input_protein.name,"/usr/src/app/docking_pose.sdf"], run_time
|
|
|
|
| 182 |
# define any options here
|
| 183 |
|
| 184 |
# for automated inference the default options are used
|
| 185 |
+
exhaustiveness = gr.Slider(1,10,value=1, label="Slider Option")
|
| 186 |
# checkbox_option = gr.Checkbox(label="Checkbox Option")
|
| 187 |
# dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")
|
| 188 |
|
|
|
|
| 193 |
[
|
| 194 |
"SVKSEYAEAAAVGQEAVAVFNTMKAAFQNGDKEAVAQYLARLASLYTRHEELLNRILEKARREGNKEAVTLMNEFTATFQTGKSIFNAMVAAFKNGDDDSFESYLQALEKVTAKGETLADQIAKAL:SVKSEYAEAAAVGQEAVAVFNTMKAAFQNGDKEAVAQYLARLASLYTRHEELLNRILEKARREGNKEAVTLMNEFTATFQTGKSIFNAMVAAFKNGDDDSFESYLQALEKVTAKGETLADQIAKAL",
|
| 195 |
"COc1ccc(cc1)n2c3c(c(n2)C(=O)N)CCN(C3=O)c4ccc(cc4)N5CCCCC5=O",
|
| 196 |
+
"input_test.pdb"
|
| 197 |
],
|
| 198 |
],
|
| 199 |
[input_sequence, input_ligand, input_protein],
|
|
|
|
| 227 |
out = Molecule3D(reps=reps)
|
| 228 |
run_time = gr.Textbox(label="Runtime")
|
| 229 |
|
| 230 |
+
btn.click(predict, inputs=[input_sequence, input_ligand, input_protein, exhaustiveness], outputs=[out, run_time])
|
| 231 |
|
| 232 |
app.launch()
|