Spaces:
Sleeping
Sleeping
fix train.py
Browse files
train.py
CHANGED
|
@@ -105,6 +105,9 @@ def get_system(system_id: str) -> PinderSystem:
|
|
| 105 |
from Bio import PDB
|
| 106 |
from Bio.PDB.PDBIO import PDBIO
|
| 107 |
|
|
|
|
|
|
|
|
|
|
| 108 |
log = setup_logger(__name__)
|
| 109 |
|
| 110 |
try:
|
|
@@ -265,208 +268,46 @@ class PairedPDB(HeteroData): # type: ignore
|
|
| 265 |
|
| 266 |
return graph
|
| 267 |
|
| 268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
#
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
# )
|
| 295 |
-
#
|
| 296 |
-
# if atom_types is not None:
|
| 297 |
-
# unknown_name_idx = max(pc.ALL_ATOM_POSNS.values()) + 1
|
| 298 |
-
# types_array_at = np.zeros((len(atom_types), 1))
|
| 299 |
-
# for i, name in enumerate(atom_types):
|
| 300 |
-
# types_array_at[i] = pc.ALL_ATOM_POSNS.get(name, unknown_name_idx)
|
| 301 |
-
# property_dict["atom_types"] = torch.tensor(types_array_at).type(dtype)
|
| 302 |
-
# if element_types is not None:
|
| 303 |
-
# types_array_ele = np.zeros((len(element_types), 1))
|
| 304 |
-
# for i, name in enumerate(element_types):
|
| 305 |
-
# types_array_ele[i] = pc.ELE2NUM.get(name, pc.ELE2NUM["other"])
|
| 306 |
-
# property_dict["element_types"] = torch.tensor(types_array_ele).type(dtype)
|
| 307 |
-
# if residue_types is not None:
|
| 308 |
-
# unknown_name_idx = max(pc.AA_TO_INDEX.values()) + 1
|
| 309 |
-
# types_array_res = np.zeros((len(residue_types), 1))
|
| 310 |
-
# for i, name in enumerate(residue_types):
|
| 311 |
-
# types_array_res[i] = pc.AA_TO_INDEX.get(name, unknown_name_idx)
|
| 312 |
-
# property_dict["residue_types"] = torch.tensor(types_array_res).type(dtype)
|
| 313 |
-
|
| 314 |
-
# if atom_coordinates is not None:
|
| 315 |
-
# property_dict["atom_coordinates"] = torch.tensor(atom_coordinates, dtype=dtype)
|
| 316 |
-
|
| 317 |
-
# if residue_coordinates is not None:
|
| 318 |
-
# property_dict["residue_coordinates"] = torch.tensor(
|
| 319 |
-
# residue_coordinates, dtype=dtype
|
| 320 |
-
# )
|
| 321 |
-
# if residue_ids is not None:
|
| 322 |
-
# property_dict["residue_ids"] = torch.tensor(residue_ids, dtype=dtype)
|
| 323 |
-
# if chain_ids is not None:
|
| 324 |
-
# property_dict["chain_ids"] = torch.zeros(len(chain_ids), dtype=dtype)
|
| 325 |
-
# property_dict["chain_ids"][chain_ids == "L"] = 1
|
| 326 |
-
# return property_dict
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
# class NodeRepresentation(Enum):
|
| 330 |
-
# Surface = "surface"
|
| 331 |
-
# Atom = "atom"
|
| 332 |
-
# Residue = "residue"
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
# class PairedPDB(HeteroData): # type: ignore
|
| 336 |
-
# @classmethod
|
| 337 |
-
# def from_tuple_system(
|
| 338 |
-
# cls,
|
| 339 |
-
|
| 340 |
-
# tupal: tuple = (Structure , Structure , Structure),
|
| 341 |
-
|
| 342 |
-
# add_edges: bool = True,
|
| 343 |
-
# k: int = 10,
|
| 344 |
-
|
| 345 |
-
# ) -> PairedPDB:
|
| 346 |
-
# return cls.from_structure_pair(
|
| 347 |
-
|
| 348 |
-
# holo=tupal[0],
|
| 349 |
-
# apo=tupal[1],
|
| 350 |
-
# add_edges=add_edges,
|
| 351 |
-
# k=k,
|
| 352 |
-
# )
|
| 353 |
-
|
| 354 |
-
# @classmethod
|
| 355 |
-
# def from_structure_pair(
|
| 356 |
-
# cls,
|
| 357 |
-
|
| 358 |
-
# holo: Structure,
|
| 359 |
-
# apo: Structure,
|
| 360 |
-
|
| 361 |
-
# add_edges: bool = True,
|
| 362 |
-
# k: int = 10,
|
| 363 |
-
# ) -> PairedPDB:
|
| 364 |
-
# graph = cls()
|
| 365 |
-
# holo_calpha = holo.filter("atom_name", mask=["CA"])
|
| 366 |
-
# apo_calpha = apo.filter("atom_name", mask=["CA"])
|
| 367 |
-
# r_h = (holo.dataframe['chain_id'] == 'R').sum()
|
| 368 |
-
# r_a = (apo.dataframe['chain_id'] == 'R').sum()
|
| 369 |
-
|
| 370 |
-
# holo_r_props = structure2tensor(
|
| 371 |
-
# atom_coordinates=holo.coords[:r_h],
|
| 372 |
-
# atom_types=holo.atom_array.atom_name[:r_h],
|
| 373 |
-
# element_types=holo.atom_array.element[:r_h],
|
| 374 |
-
# residue_coordinates=holo_calpha.coords[:r_h],
|
| 375 |
-
# residue_types=holo_calpha.atom_array.res_name[:r_h],
|
| 376 |
-
# residue_ids=holo_calpha.atom_array.res_id[:r_h],
|
| 377 |
-
# )
|
| 378 |
-
# holo_l_props = structure2tensor(
|
| 379 |
-
# atom_coordinates=holo.coords[r_h:],
|
| 380 |
-
|
| 381 |
-
# atom_types=holo.atom_array.atom_name[r_h:],
|
| 382 |
-
# element_types=holo.atom_array.element[r_h:],
|
| 383 |
-
# residue_coordinates=holo_calpha.coords[r_h:],
|
| 384 |
-
# residue_types=holo_calpha.atom_array.res_name[r_h:],
|
| 385 |
-
# residue_ids=holo_calpha.atom_array.res_id[r_h:],
|
| 386 |
-
# )
|
| 387 |
-
# apo_r_props = structure2tensor(
|
| 388 |
-
# atom_coordinates=apo.coords[:r_a],
|
| 389 |
-
# atom_types=apo.atom_array.atom_name[:r_a],
|
| 390 |
-
# element_types=apo.atom_array.element[:r_a],
|
| 391 |
-
# residue_coordinates=apo_calpha.coords[:r_a],
|
| 392 |
-
# residue_types=apo_calpha.atom_array.res_name[:r_a],
|
| 393 |
-
# residue_ids=apo_calpha.atom_array.res_id[:r_a],
|
| 394 |
-
# )
|
| 395 |
-
# apo_l_props = structure2tensor(
|
| 396 |
-
# atom_coordinates=apo.coords[r_a:],
|
| 397 |
-
# atom_types=apo.atom_array.atom_name[r_a:],
|
| 398 |
-
# element_types=apo.atom_array.element[r_a:],
|
| 399 |
-
# residue_coordinates=apo_calpha.coords[r_a:],
|
| 400 |
-
# residue_types=apo_calpha.atom_array.res_name[r_a:],
|
| 401 |
-
# residue_ids=apo_calpha.atom_array.res_id[r_a:],
|
| 402 |
-
# )
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
# graph["ligand"].x = apo_l_props["atom_types"]
|
| 407 |
-
# graph["ligand"].pos = apo_l_props["atom_coordinates"]
|
| 408 |
-
# graph["receptor"].x = apo_r_props["atom_types"]
|
| 409 |
-
# graph["receptor"].pos = apo_r_props["atom_coordinates"]
|
| 410 |
-
# graph["ligand"].y = holo_l_props["atom_coordinates"]
|
| 411 |
-
# # graph["ligand"].pos = holo_l_props["atom_coordinates"]
|
| 412 |
-
# graph["receptor"].y = holo_r_props["atom_coordinates"]
|
| 413 |
-
# # graph["receptor"].pos = holo_r_props["atom_coordinates"]
|
| 414 |
-
# if add_edges and torch_cluster_installed:
|
| 415 |
-
# graph["ligand"].edge_index = knn_graph(
|
| 416 |
-
# graph["ligand"].pos, k=k
|
| 417 |
-
# )
|
| 418 |
-
# graph["receptor"].edge_index = knn_graph(
|
| 419 |
-
# graph["receptor"].pos, k=k
|
| 420 |
-
# )
|
| 421 |
-
# # graph["ligand"].edge_index = knn_graph(
|
| 422 |
-
# # graph["ligand"].pos, k=k
|
| 423 |
-
# # )
|
| 424 |
-
# # graph["receptor"].edge_index = knn_graph(
|
| 425 |
-
# # graph["receptor"].pos, k=k
|
| 426 |
-
# # )
|
| 427 |
-
|
| 428 |
-
# return graph
|
| 429 |
-
|
| 430 |
-
# index = get_index()
|
| 431 |
-
# # train = index[index.split == "train"].copy()
|
| 432 |
-
# # val = index[index.split == "val"].copy()
|
| 433 |
-
# # test = index[index.split == "test"].copy()
|
| 434 |
-
# # train_filtered = train[(train['apo_R'] == True) & (train['apo_L'] == True)].copy()
|
| 435 |
-
# # val_filtered = val[(val['apo_R'] == True) & (val['apo_L'] == True)].copy()
|
| 436 |
-
# # test_filtered = test[(test['apo_R'] == True) & (test['apo_L'] == True)].copy()
|
| 437 |
-
|
| 438 |
-
# # train_apo = [get_system(train_filtered.id.iloc[i]).create_masked_bound_unbound_complexes(
|
| 439 |
-
# # monomer_types=["apo"], renumber_residues=True
|
| 440 |
-
# # ) for i in range(0, 10000)]
|
| 441 |
-
|
| 442 |
-
# # train_new_apo11 = [get_system(train_filtered.id.iloc[i]).create_masked_bound_unbound_complexes(
|
| 443 |
-
# # monomer_types=["apo"], renumber_residues=True
|
| 444 |
-
# # ) for i in range(10000,10908)]
|
| 445 |
-
|
| 446 |
-
# # train_new_apo12 = [get_system(train_filtered.id.iloc[i]).create_masked_bound_unbound_complexes(
|
| 447 |
-
# # # monomer_types=["apo"], renumber_residues=True
|
| 448 |
-
# # ) for i in range(10908,11816)]
|
| 449 |
-
|
| 450 |
-
# # val_new_apo1 = [get_system(val_filtered.id.iloc[i]).create_masked_bound_unbound_complexes(
|
| 451 |
-
# # monomer_types=["apo"], renumber_residues=True
|
| 452 |
-
# # ) for i in range(0,342)]
|
| 453 |
-
|
| 454 |
-
# # test_new_apo1 = [get_system(test_filtered.id.iloc[i]).create_masked_bound_unbound_complexes(
|
| 455 |
-
# # monomer_types=["apo"], renumber_residues=True
|
| 456 |
-
# # ) for i in range(0,342)]
|
| 457 |
-
|
| 458 |
-
# # val_apo = val_new_apo1 + train_new_apo11
|
| 459 |
-
# # test_apo = test_new_apo1 + train_new_apo12
|
| 460 |
-
|
| 461 |
-
# import pickle
|
| 462 |
-
# # with open("train_apo.pkl", "wb") as file:
|
| 463 |
-
# # pickle.dump(train_apo, file)
|
| 464 |
|
| 465 |
-
#
|
| 466 |
-
#
|
| 467 |
|
| 468 |
-
#
|
| 469 |
-
#
|
| 470 |
# with open("train_apo.pkl", "rb") as file:
|
| 471 |
# train_apo = pickle.load(file)
|
| 472 |
|
|
@@ -476,136 +317,136 @@ class PairedPDB(HeteroData): # type: ignore
|
|
| 476 |
# with open("test_apo.pkl", "rb") as file:
|
| 477 |
# test_apo = pickle.load(file)
|
| 478 |
|
| 479 |
-
# #
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
# #
|
| 484 |
-
#
|
| 485 |
-
#
|
| 486 |
-
# # data = HeteroData()
|
| 487 |
-
# # data["ligand"].x = train_geo[i]["ligand"].x
|
| 488 |
-
# # data['ligand'].y = train_geo[i]["ligand"].y
|
| 489 |
-
# # data["ligand"].pos = train_geo[i]["ligand"].pos
|
| 490 |
-
# # data["ligand","ligand"].edge_index = train_geo[i]["ligand"]
|
| 491 |
-
# # data["receptor"].x = train_geo[i]["receptor"].x
|
| 492 |
-
# # data['receptor'].y = train_geo[i]["receptor"].y
|
| 493 |
-
# # data["receptor"].pos = train_geo[i]["receptor"].pos
|
| 494 |
-
# # data["receptor","receptor"].edge_index = train_geo[i]["receptor"]
|
| 495 |
-
# # #torch.save(data, f"./data/processed/train_sample_{i}.pt")
|
| 496 |
-
# # Train.append(data)
|
| 497 |
-
|
| 498 |
-
# from torch_geometric.data import HeteroData
|
| 499 |
-
# import torch_sparse
|
| 500 |
-
# from torch_geometric.edge_index import to_sparse_tensor
|
| 501 |
-
# import torch
|
| 502 |
-
|
| 503 |
-
# # Example of converting edge indices to SparseTensor and storing them in HeteroData
|
| 504 |
-
|
| 505 |
-
# Train1 = []
|
| 506 |
-
# for i in range(len(train_geo)):
|
| 507 |
# data = HeteroData()
|
| 508 |
-
# # Define ligand node features
|
| 509 |
# data["ligand"].x = train_geo[i]["ligand"].x
|
| 510 |
-
# data[
|
| 511 |
# data["ligand"].pos = train_geo[i]["ligand"].pos
|
| 512 |
-
#
|
| 513 |
-
# ligand_edge_index = train_geo[i]["ligand"]["edge_index"]
|
| 514 |
-
# data["ligand", "ligand"].edge_index = to_sparse_tensor(ligand_edge_index, sparse_sizes=(train_geo[i]["ligand"].num_nodes,)*2)
|
| 515 |
-
|
| 516 |
-
# # Define receptor node features
|
| 517 |
# data["receptor"].x = train_geo[i]["receptor"].x
|
| 518 |
-
# data[
|
| 519 |
# data["receptor"].pos = train_geo[i]["receptor"].pos
|
| 520 |
-
#
|
| 521 |
-
#
|
| 522 |
-
#
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
#
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
#
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
#
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 543 |
# data = HeteroData()
|
| 544 |
-
# # Define ligand node features
|
| 545 |
# data["ligand"].x = val_geo[i]["ligand"].x
|
| 546 |
-
# data[
|
| 547 |
# data["ligand"].pos = val_geo[i]["ligand"].pos
|
| 548 |
-
#
|
| 549 |
-
# ligand_edge_index = val_geo[i]["ligand"]["edge_index"]
|
| 550 |
-
# data["ligand", "ligand"].edge_index = to_sparse_tensor(ligand_edge_index, sparse_sizes=(val_geo[i]["ligand"].num_nodes,)*2)
|
| 551 |
-
|
| 552 |
-
# # Define receptor node features
|
| 553 |
# data["receptor"].x = val_geo[i]["receptor"].x
|
| 554 |
-
# data[
|
| 555 |
# data["receptor"].pos = val_geo[i]["receptor"].pos
|
| 556 |
-
#
|
| 557 |
-
#
|
| 558 |
-
#
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
#
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
#
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
#
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
#
|
| 575 |
-
|
| 576 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 577 |
# data = HeteroData()
|
| 578 |
-
# # Define ligand node features
|
| 579 |
# data["ligand"].x = test_geo[i]["ligand"].x
|
| 580 |
-
# data[
|
| 581 |
# data["ligand"].pos = test_geo[i]["ligand"].pos
|
| 582 |
-
#
|
| 583 |
-
# ligand_edge_index = test_geo[i]["ligand"]["edge_index"]
|
| 584 |
-
# data["ligand", "ligand"].edge_index = to_sparse_tensor(ligand_edge_index, sparse_sizes=(test_geo[i]["ligand"].num_nodes,)*2)
|
| 585 |
-
|
| 586 |
-
# # Define receptor node features
|
| 587 |
# data["receptor"].x = test_geo[i]["receptor"].x
|
| 588 |
-
# data[
|
| 589 |
# data["receptor"].pos = test_geo[i]["receptor"].pos
|
| 590 |
-
#
|
| 591 |
-
#
|
| 592 |
-
#
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 597 |
|
| 598 |
-
#
|
| 599 |
-
#
|
| 600 |
|
| 601 |
-
#
|
| 602 |
-
#
|
| 603 |
|
| 604 |
-
#
|
| 605 |
-
#
|
| 606 |
|
| 607 |
-
#
|
| 608 |
-
#
|
| 609 |
|
| 610 |
-
#
|
| 611 |
-
#
|
|
|
|
| 105 |
from Bio import PDB
|
| 106 |
from Bio.PDB.PDBIO import PDBIO
|
| 107 |
|
| 108 |
+
|
| 109 |
+
# To create dataset, we have used only PINDER datyaset with following steps as follows:
|
| 110 |
+
|
| 111 |
log = setup_logger(__name__)
|
| 112 |
|
| 113 |
try:
|
|
|
|
| 268 |
|
| 269 |
return graph
|
| 270 |
|
| 271 |
+
index = get_index()
|
| 272 |
+
train = index[index.split == "train"].copy()
|
| 273 |
+
val = index[index.split == "val"].copy()
|
| 274 |
+
test = index[index.split == "test"].copy()
|
| 275 |
+
train_filtered = train[(train['apo_R'] == True) & (train['apo_L'] == True)].copy()
|
| 276 |
+
val_filtered = val[(val['apo_R'] == True) & (val['apo_L'] == True)].copy()
|
| 277 |
+
test_filtered = test[(test['apo_R'] == True) & (test['apo_L'] == True)].copy()
|
| 278 |
|
| 279 |
+
train_apo = [get_system(train_filtered.id.iloc[i]).create_masked_bound_unbound_complexes(
|
| 280 |
+
monomer_types=["apo"], renumber_residues=True
|
| 281 |
+
) for i in range(0, 10000)]
|
| 282 |
+
|
| 283 |
+
train_new_apo11 = [get_system(train_filtered.id.iloc[i]).create_masked_bound_unbound_complexes(
|
| 284 |
+
monomer_types=["apo"], renumber_residues=True
|
| 285 |
+
) for i in range(10000,10908)]
|
| 286 |
+
|
| 287 |
+
train_new_apo12 = [get_system(train_filtered.id.iloc[i]).create_masked_bound_unbound_complexes(
|
| 288 |
+
# monomer_types=["apo"], renumber_residues=True
|
| 289 |
+
) for i in range(10908,11816)]
|
| 290 |
+
|
| 291 |
+
val_new_apo1 = [get_system(val_filtered.id.iloc[i]).create_masked_bound_unbound_complexes(
|
| 292 |
+
monomer_types=["apo"], renumber_residues=True
|
| 293 |
+
) for i in range(0,342)]
|
| 294 |
+
|
| 295 |
+
test_new_apo1 = [get_system(test_filtered.id.iloc[i]).create_masked_bound_unbound_complexes(
|
| 296 |
+
monomer_types=["apo"], renumber_residues=True
|
| 297 |
+
) for i in range(0,342)]
|
| 298 |
+
|
| 299 |
+
val_apo = val_new_apo1 + train_new_apo11
|
| 300 |
+
test_apo = test_new_apo1 + train_new_apo12
|
| 301 |
+
|
| 302 |
+
import pickle
|
| 303 |
+
# with open("train_apo.pkl", "wb") as file:
|
| 304 |
+
# pickle.dump(train_apo, file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
|
| 306 |
+
# with open("val_apo.pkl", "wb") as file:
|
| 307 |
+
# pickle.dump(val_apo, file)
|
| 308 |
|
| 309 |
+
# with open("test_apo.pkl", "wb") as file:
|
| 310 |
+
# pickle.dump(test_apo, file)
|
| 311 |
# with open("train_apo.pkl", "rb") as file:
|
| 312 |
# train_apo = pickle.load(file)
|
| 313 |
|
|
|
|
| 317 |
# with open("test_apo.pkl", "rb") as file:
|
| 318 |
# test_apo = pickle.load(file)
|
| 319 |
|
| 320 |
+
# # %%
|
| 321 |
+
train_geo = [PairedPDB.from_tuple_system(train_apo[i]) for i in range(0,len(train_apo))]
|
| 322 |
+
val_geo = [PairedPDB.from_tuple_system(val_apo[i]) for i in range(0,len(val_apo))]
|
| 323 |
+
test_geo = [PairedPDB.from_tuple_system(test_apo[i]) for i in range(0,len(test_apo))]
|
| 324 |
+
# # %%
|
| 325 |
+
# Train= []
|
| 326 |
+
# for i in range(0,len(train_geo)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
# data = HeteroData()
|
|
|
|
| 328 |
# data["ligand"].x = train_geo[i]["ligand"].x
|
| 329 |
+
# data['ligand'].y = train_geo[i]["ligand"].y
|
| 330 |
# data["ligand"].pos = train_geo[i]["ligand"].pos
|
| 331 |
+
# data["ligand","ligand"].edge_index = train_geo[i]["ligand"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
# data["receptor"].x = train_geo[i]["receptor"].x
|
| 333 |
+
# data['receptor'].y = train_geo[i]["receptor"].y
|
| 334 |
# data["receptor"].pos = train_geo[i]["receptor"].pos
|
| 335 |
+
# data["receptor","receptor"].edge_index = train_geo[i]["receptor"]
|
| 336 |
+
# #torch.save(data, f"./data/processed/train_sample_{i}.pt")
|
| 337 |
+
# Train.append(data)
|
| 338 |
+
|
| 339 |
+
from torch_geometric.data import HeteroData
|
| 340 |
+
import torch_sparse
|
| 341 |
+
from torch_geometric.edge_index import to_sparse_tensor
|
| 342 |
+
import torch
|
| 343 |
+
|
| 344 |
+
# Example of converting edge indices to SparseTensor and storing them in HeteroData
|
| 345 |
+
|
| 346 |
+
Train1 = []
|
| 347 |
+
for i in range(len(train_geo)):
|
| 348 |
+
data = HeteroData()
|
| 349 |
+
# Define ligand node features
|
| 350 |
+
data["ligand"].x = train_geo[i]["ligand"].x
|
| 351 |
+
data["ligand"].y = train_geo[i]["ligand"].y
|
| 352 |
+
data["ligand"].pos = train_geo[i]["ligand"].pos
|
| 353 |
+
# Convert ligand edge index to SparseTensor
|
| 354 |
+
ligand_edge_index = train_geo[i]["ligand"]["edge_index"]
|
| 355 |
+
data["ligand", "ligand"].edge_index = to_sparse_tensor(ligand_edge_index, sparse_sizes=(train_geo[i]["ligand"].num_nodes,)*2)
|
| 356 |
+
|
| 357 |
+
# Define receptor node features
|
| 358 |
+
data["receptor"].x = train_geo[i]["receptor"].x
|
| 359 |
+
data["receptor"].y = train_geo[i]["receptor"].y
|
| 360 |
+
data["receptor"].pos = train_geo[i]["receptor"].pos
|
| 361 |
+
# Convert receptor edge index to SparseTensor
|
| 362 |
+
receptor_edge_index = train_geo[i]["receptor"]["edge_index"]
|
| 363 |
+
data["receptor", "receptor"].edge_index = to_sparse_tensor(receptor_edge_index, sparse_sizes=(train_geo[i]["receptor"].num_nodes,)*2)
|
| 364 |
+
|
| 365 |
+
Train1.append(data)
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
# # %%
|
| 369 |
+
# Val= []
|
| 370 |
+
# for i in range(0,len(val_geo)):
|
| 371 |
# data = HeteroData()
|
|
|
|
| 372 |
# data["ligand"].x = val_geo[i]["ligand"].x
|
| 373 |
+
# data['ligand'].y = val_geo[i]["ligand"].y
|
| 374 |
# data["ligand"].pos = val_geo[i]["ligand"].pos
|
| 375 |
+
# data["ligand","ligand"].edge_index = val_geo[i]["ligand"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 376 |
# data["receptor"].x = val_geo[i]["receptor"].x
|
| 377 |
+
# data['receptor'].y = val_geo[i]["receptor"].y
|
| 378 |
# data["receptor"].pos = val_geo[i]["receptor"].pos
|
| 379 |
+
# data["receptor","receptor"].edge_index = val_geo[i]["receptor"]
|
| 380 |
+
# #torch.save(data, f"./data/processed/val_sample_{i}.pt")
|
| 381 |
+
# Val.append(data)
|
| 382 |
+
Val1 = []
|
| 383 |
+
for i in range(len(val_geo)):
|
| 384 |
+
data = HeteroData()
|
| 385 |
+
# Define ligand node features
|
| 386 |
+
data["ligand"].x = val_geo[i]["ligand"].x
|
| 387 |
+
data["ligand"].y = val_geo[i]["ligand"].y
|
| 388 |
+
data["ligand"].pos = val_geo[i]["ligand"].pos
|
| 389 |
+
# Convert ligand edge index to SparseTensor
|
| 390 |
+
ligand_edge_index = val_geo[i]["ligand"]["edge_index"]
|
| 391 |
+
data["ligand", "ligand"].edge_index = to_sparse_tensor(ligand_edge_index, sparse_sizes=(val_geo[i]["ligand"].num_nodes,)*2)
|
| 392 |
+
|
| 393 |
+
# Define receptor node features
|
| 394 |
+
data["receptor"].x = val_geo[i]["receptor"].x
|
| 395 |
+
data["receptor"].y = val_geo[i]["receptor"].y
|
| 396 |
+
data["receptor"].pos = val_geo[i]["receptor"].pos
|
| 397 |
+
# Convert receptor edge index to SparseTensor
|
| 398 |
+
receptor_edge_index = val_geo[i]["receptor"]["edge_index"]
|
| 399 |
+
data["receptor", "receptor"].edge_index = to_sparse_tensor(receptor_edge_index, sparse_sizes=(val_geo[i]["receptor"].num_nodes,)*2)
|
| 400 |
+
|
| 401 |
+
Val1.append(data)
|
| 402 |
+
# # %%
|
| 403 |
+
# Test= []
|
| 404 |
+
# for i in range(0,len(test_geo)):
|
| 405 |
# data = HeteroData()
|
|
|
|
| 406 |
# data["ligand"].x = test_geo[i]["ligand"].x
|
| 407 |
+
# data['ligand'].y = test_geo[i]["ligand"].y
|
| 408 |
# data["ligand"].pos = test_geo[i]["ligand"].pos
|
| 409 |
+
# data["ligand","ligand"].edge_index = test_geo[i]["ligand"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
# data["receptor"].x = test_geo[i]["receptor"].x
|
| 411 |
+
# data['receptor'].y = test_geo[i]["receptor"].y
|
| 412 |
# data["receptor"].pos = test_geo[i]["receptor"].pos
|
| 413 |
+
# data["receptor","receptor"].edge_index = test_geo[i]["receptor"]
|
| 414 |
+
# #torch.save(data, f"./data/processed/test_sample_{i}.pt")
|
| 415 |
+
# Test.append(data)
|
| 416 |
+
Test1 = []
|
| 417 |
+
for i in range(len(test_geo)):
|
| 418 |
+
data = HeteroData()
|
| 419 |
+
# Define ligand node features
|
| 420 |
+
data["ligand"].x = test_geo[i]["ligand"].x
|
| 421 |
+
data["ligand"].y = test_geo[i]["ligand"].y
|
| 422 |
+
data["ligand"].pos = test_geo[i]["ligand"].pos
|
| 423 |
+
# Convert ligand edge index to SparseTensor
|
| 424 |
+
ligand_edge_index = test_geo[i]["ligand"]["edge_index"]
|
| 425 |
+
data["ligand", "ligand"].edge_index = to_sparse_tensor(ligand_edge_index, sparse_sizes=(test_geo[i]["ligand"].num_nodes,)*2)
|
| 426 |
+
|
| 427 |
+
# Define receptor node features
|
| 428 |
+
data["receptor"].x = test_geo[i]["receptor"].x
|
| 429 |
+
data["receptor"].y = test_geo[i]["receptor"].y
|
| 430 |
+
data["receptor"].pos = test_geo[i]["receptor"].pos
|
| 431 |
+
# Convert receptor edge index to SparseTensor
|
| 432 |
+
receptor_edge_index = test_geo[i]["receptor"]["edge_index"]
|
| 433 |
+
data["receptor", "receptor"].edge_index = to_sparse_tensor(receptor_edge_index, sparse_sizes=(test_geo[i]["receptor"].num_nodes,)*2)
|
| 434 |
+
|
| 435 |
+
Test1.append(data)
|
| 436 |
+
# with open("Train.pkl", "wb") as file:
|
| 437 |
+
# pickle.dump(Train, file)
|
| 438 |
|
| 439 |
+
# with open("Val.pkl", "wb") as file:
|
| 440 |
+
# pickle.dump(Val, file)
|
| 441 |
|
| 442 |
+
# with open("Test.pkl", "wb") as file:
|
| 443 |
+
# pickle.dump(Test, file)
|
| 444 |
|
| 445 |
+
# with open("Train1.pkl", "rb") as file:
|
| 446 |
+
# Train= pickle.load(file)
|
| 447 |
|
| 448 |
+
# with open("Val.pkl", "rb") as file:
|
| 449 |
+
# Val = pickle.load(file)
|
| 450 |
|
| 451 |
+
# with open("Test.pkl", "rb") as file:
|
| 452 |
+
# Test = pickle.load(file)
|