Upload 6 files
Browse files- .gitattributes +1 -0
- README.md +12 -0
- app.py +307 -0
- facialTraning.ipynb +0 -0
- haarcascade_frontalface_default.xml +0 -0
- my_model3.h5 +3 -0
- requirements.txt +12 -0
.gitattributes
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
my_model3.h5 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Moodify
|
| 3 |
+
emoji: ⚡
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: pink
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.47.2
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
import numpy as np
|
| 6 |
+
from fastapi import FastAPI, UploadFile, File
|
| 7 |
+
from fastapi.responses import JSONResponse
|
| 8 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 9 |
+
import uvicorn
|
| 10 |
+
import io
|
| 11 |
+
import logging
|
| 12 |
+
import tensorflow as tf
|
| 13 |
+
from tensorflow import keras
|
| 14 |
+
import cv2
|
| 15 |
+
|
| 16 |
+
# ----------------- LOGGER SETUP -----------------
|
| 17 |
+
logging.basicConfig(
|
| 18 |
+
level=logging.INFO,
|
| 19 |
+
format="%(asctime)s - %(levelname)s - %(message)s"
|
| 20 |
+
)
|
| 21 |
+
logger = logging.getLogger("face-analysis")
|
| 22 |
+
|
| 23 |
+
# ----------------- LOAD MODELS -----------------
|
| 24 |
+
# Emotion model (H5 format)
|
| 25 |
+
H5_MODEL_PATH = "my_model3.h5"
|
| 26 |
+
INPUT_SIZE = (48, 48)
|
| 27 |
+
|
| 28 |
+
emotion_model = keras.models.load_model(H5_MODEL_PATH)
|
| 29 |
+
logger.info("Emotion model loaded successfully")
|
| 30 |
+
logger.info(f"Model input shape: {emotion_model.input_shape}")
|
| 31 |
+
logger.info(f"Model output shape: {emotion_model.output_shape}")
|
| 32 |
+
|
| 33 |
+
# Age model
|
| 34 |
+
age_model_name = "prithivMLmods/facial-age-detection"
|
| 35 |
+
age_model = SiglipForImageClassification.from_pretrained(age_model_name)
|
| 36 |
+
age_processor = AutoImageProcessor.from_pretrained(age_model_name)
|
| 37 |
+
|
| 38 |
+
# Face detection cascade
|
| 39 |
+
HAAR_CASCADE_PATH = 'haarcascade_frontalface_default.xml'
|
| 40 |
+
face_cascade = cv2.CascadeClassifier(HAAR_CASCADE_PATH)
|
| 41 |
+
|
| 42 |
+
# Verify cascade loaded successfully
|
| 43 |
+
if face_cascade.empty():
|
| 44 |
+
logger.error(f"Failed to load Haar Cascade from {HAAR_CASCADE_PATH}")
|
| 45 |
+
logger.warning("Attempting to load from OpenCV data directory...")
|
| 46 |
+
# Try loading from OpenCV's data directory
|
| 47 |
+
HAAR_CASCADE_PATH = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
|
| 48 |
+
face_cascade = cv2.CascadeClassifier(HAAR_CASCADE_PATH)
|
| 49 |
+
if face_cascade.empty():
|
| 50 |
+
logger.error("Still failed to load Haar Cascade. Face detection will not work.")
|
| 51 |
+
else:
|
| 52 |
+
logger.info(f"Haar Cascade loaded from OpenCV data: {HAAR_CASCADE_PATH}")
|
| 53 |
+
else:
|
| 54 |
+
logger.info(f"Haar Cascade loaded successfully from {HAAR_CASCADE_PATH}")
|
| 55 |
+
|
| 56 |
+
# Emotion classes
|
| 57 |
+
emotions = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]
|
| 58 |
+
|
| 59 |
+
# Age labels
|
| 60 |
+
id2label = {
|
| 61 |
+
"0": "age 01-10",
|
| 62 |
+
"1": "age 11-20",
|
| 63 |
+
"2": "age 21-30",
|
| 64 |
+
"3": "age 31-40",
|
| 65 |
+
"4": "age 41-55",
|
| 66 |
+
"5": "age 56-65",
|
| 67 |
+
"6": "age 66-80",
|
| 68 |
+
"7": "age 80+"
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
# ----------------- FACE DETECTION -----------------
|
| 72 |
+
def detect_and_crop_face(image: Image.Image):
|
| 73 |
+
"""
|
| 74 |
+
Detect face in image and crop it.
|
| 75 |
+
Returns: (cropped_face, message, success)
|
| 76 |
+
"""
|
| 77 |
+
try:
|
| 78 |
+
# Convert PIL to numpy array for OpenCV
|
| 79 |
+
img_array = np.asarray(image)
|
| 80 |
+
logger.debug(f"Image shape: {img_array.shape}, dtype: {img_array.dtype}")
|
| 81 |
+
|
| 82 |
+
# Convert RGB to BGR if needed (OpenCV uses BGR)
|
| 83 |
+
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
|
| 84 |
+
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
|
| 85 |
+
|
| 86 |
+
# Convert to grayscale for better face detection
|
| 87 |
+
gray = cv2.cvtColor(img_array, cv2.COLOR_BGR2GRAY) if len(img_array.shape) == 3 else img_array
|
| 88 |
+
logger.debug(f"Grayscale shape: {gray.shape}")
|
| 89 |
+
|
| 90 |
+
# Detect faces with more lenient parameters
|
| 91 |
+
faces = face_cascade.detectMultiScale(
|
| 92 |
+
gray,
|
| 93 |
+
scaleFactor=1.1, # More sensitive (was 1.3)
|
| 94 |
+
minNeighbors=3, # More lenient (was 5)
|
| 95 |
+
minSize=(30, 30), # Minimum face size
|
| 96 |
+
flags=cv2.CASCADE_SCALE_IMAGE
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
logger.info(f"Face detection result: {len(faces)} face(s) detected")
|
| 100 |
+
|
| 101 |
+
if len(faces) == 0:
|
| 102 |
+
logger.warning("No face detected in image - returning original image")
|
| 103 |
+
# Fallback: return original image if no face detected
|
| 104 |
+
return image, "⚠️ No face detected - using full image", True
|
| 105 |
+
|
| 106 |
+
if len(faces) == 1:
|
| 107 |
+
# Single face detected - crop it
|
| 108 |
+
x, y, w, h = faces[0]
|
| 109 |
+
crop_img = image.crop((x, y, x+w, y+h))
|
| 110 |
+
logger.info(f"✓ Face detected and cropped: position ({x},{y}), size {w}x{h}")
|
| 111 |
+
return crop_img, f"✓ Face detected at ({x},{y}), size {w}x{h}", True
|
| 112 |
+
else:
|
| 113 |
+
# Multiple faces detected - use the largest one
|
| 114 |
+
logger.warning(f"Multiple faces detected ({len(faces)}), using largest face")
|
| 115 |
+
# Find the largest face
|
| 116 |
+
largest_face = max(faces, key=lambda face: face[2] * face[3])
|
| 117 |
+
x, y, w, h = largest_face
|
| 118 |
+
crop_img = image.crop((x, y, x+w, y+h))
|
| 119 |
+
return crop_img, f"⚠️ {len(faces)} faces detected, using largest one", True
|
| 120 |
+
|
| 121 |
+
except Exception as e:
|
| 122 |
+
logger.error(f"Face detection error: {e}")
|
| 123 |
+
import traceback
|
| 124 |
+
logger.error(traceback.format_exc())
|
| 125 |
+
# Return original image on error
|
| 126 |
+
return image, f"⚠️ Face detection error - using full image", True
|
| 127 |
+
|
| 128 |
+
# ----------------- PREDICT FUNCTIONS -----------------
|
| 129 |
+
def preprocess_image_for_emotion(image: Image.Image):
|
| 130 |
+
"""
|
| 131 |
+
Preprocess image for the H5 emotion model.
|
| 132 |
+
Model expects: (batch_size, 48, 48, 1) - 48x48 grayscale images
|
| 133 |
+
"""
|
| 134 |
+
image = image.convert("L") # Convert to grayscale
|
| 135 |
+
image = image.resize(INPUT_SIZE)
|
| 136 |
+
img_array = np.array(image, dtype=np.float32)
|
| 137 |
+
img_array = np.expand_dims(img_array, axis=-1) # (48, 48) -> (48, 48, 1)
|
| 138 |
+
img_array = img_array / 255.0 # Normalize
|
| 139 |
+
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
| 140 |
+
logger.debug(f"Preprocessed shape: {img_array.shape}, dtype: {img_array.dtype}")
|
| 141 |
+
return img_array
|
| 142 |
+
|
| 143 |
+
def predict_emotion(image: Image.Image):
|
| 144 |
+
try:
|
| 145 |
+
processed_image = preprocess_image_for_emotion(image)
|
| 146 |
+
predictions = emotion_model.predict(processed_image, verbose=0)
|
| 147 |
+
probs = predictions[0]
|
| 148 |
+
idx = np.argmax(probs)
|
| 149 |
+
result = {
|
| 150 |
+
"predicted_emotion": emotions[idx],
|
| 151 |
+
"confidence": round(float(probs[idx]), 4),
|
| 152 |
+
"all_confidences": {emotions[i]: float(probs[i]) for i in range(len(emotions))}
|
| 153 |
+
}
|
| 154 |
+
logger.info(f"Predicted Emotion: {result['predicted_emotion']} (Confidence: {result['confidence']})")
|
| 155 |
+
return result
|
| 156 |
+
except Exception as e:
|
| 157 |
+
logger.error(f"Emotion prediction error: {e}")
|
| 158 |
+
import traceback
|
| 159 |
+
logger.error(traceback.format_exc())
|
| 160 |
+
return {"error": str(e)}
|
| 161 |
+
|
| 162 |
+
def predict_age(image: Image.Image):
|
| 163 |
+
try:
|
| 164 |
+
inputs = age_processor(images=image.convert("RGB"), return_tensors="pt")
|
| 165 |
+
with torch.no_grad():
|
| 166 |
+
outputs = age_model(**inputs)
|
| 167 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1).squeeze().tolist()
|
| 168 |
+
prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
| 169 |
+
idx = int(torch.argmax(torch.tensor(probs)))
|
| 170 |
+
result = {
|
| 171 |
+
"predicted_age": id2label[str(idx)],
|
| 172 |
+
"confidence": round(probs[idx], 4),
|
| 173 |
+
"all_confidences": prediction
|
| 174 |
+
}
|
| 175 |
+
logger.info(f"Predicted Age Group: {result['predicted_age']} (Confidence: {result['confidence']})")
|
| 176 |
+
return result
|
| 177 |
+
except Exception as e:
|
| 178 |
+
logger.error(f"Age prediction error: {e}")
|
| 179 |
+
import traceback
|
| 180 |
+
logger.error(traceback.format_exc())
|
| 181 |
+
return {"error": str(e)}
|
| 182 |
+
|
| 183 |
+
# ----------------- FASTAPI APP -----------------
|
| 184 |
+
app = FastAPI()
|
| 185 |
+
|
| 186 |
+
app.add_middleware(
|
| 187 |
+
CORSMiddleware,
|
| 188 |
+
allow_origins=["*"],
|
| 189 |
+
allow_credentials=True,
|
| 190 |
+
allow_methods=["*"],
|
| 191 |
+
allow_headers=["*"],
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
@app.get("/")
|
| 195 |
+
async def root():
|
| 196 |
+
return {
|
| 197 |
+
"message": "Face Emotion + Age Detection API",
|
| 198 |
+
"status": "running",
|
| 199 |
+
"endpoints": {
|
| 200 |
+
"GET /": "API information",
|
| 201 |
+
"GET /health": "Health check",
|
| 202 |
+
"POST /predict": "Upload image for emotion and age prediction",
|
| 203 |
+
"GET /gradio": "Gradio web interface"
|
| 204 |
+
}
|
| 205 |
+
}
|
| 206 |
+
|
| 207 |
+
@app.get("/health")
|
| 208 |
+
async def health():
|
| 209 |
+
return {
|
| 210 |
+
"status": "ok",
|
| 211 |
+
"emotion_model": "loaded",
|
| 212 |
+
"age_model": "loaded",
|
| 213 |
+
"face_cascade": "loaded" if not face_cascade.empty() else "failed",
|
| 214 |
+
"emotion_input_shape": str(emotion_model.input_shape),
|
| 215 |
+
"emotion_output_shape": str(emotion_model.output_shape)
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
@app.post("/predict")
|
| 219 |
+
async def predict(file: UploadFile = File(...)):
|
| 220 |
+
try:
|
| 221 |
+
contents = await file.read()
|
| 222 |
+
image = Image.open(io.BytesIO(contents))
|
| 223 |
+
|
| 224 |
+
# Detect and crop face (now always returns success=True with fallback)
|
| 225 |
+
cropped_face, face_msg, success = detect_and_crop_face(image)
|
| 226 |
+
|
| 227 |
+
# Predict on cropped face or full image (fallback)
|
| 228 |
+
emotion_result = predict_emotion(cropped_face)
|
| 229 |
+
age_result = predict_age(cropped_face)
|
| 230 |
+
|
| 231 |
+
logger.info(f"API Response -> Emotion: {emotion_result.get('predicted_emotion')} | Age: {age_result.get('predicted_age')}")
|
| 232 |
+
return JSONResponse(content={
|
| 233 |
+
"face_detection": face_msg,
|
| 234 |
+
"emotion": emotion_result,
|
| 235 |
+
"age": age_result
|
| 236 |
+
})
|
| 237 |
+
except Exception as e:
|
| 238 |
+
logger.error(f"API Error: {e}")
|
| 239 |
+
import traceback
|
| 240 |
+
logger.error(traceback.format_exc())
|
| 241 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
| 242 |
+
|
| 243 |
+
# ----------------- GRADIO DEMO -----------------
|
| 244 |
+
def gradio_wrapper(image):
|
| 245 |
+
if image is None:
|
| 246 |
+
return "No image provided", {}, "No image provided", {}, None, None, "No image uploaded"
|
| 247 |
+
|
| 248 |
+
# Detect and crop face (always succeeds with fallback)
|
| 249 |
+
cropped_face, face_msg, success = detect_and_crop_face(image)
|
| 250 |
+
|
| 251 |
+
# Get the processed image for visualization
|
| 252 |
+
processed_image = preprocess_image_for_emotion(cropped_face)
|
| 253 |
+
# Convert back to PIL for display
|
| 254 |
+
processed_display = Image.fromarray((processed_image[0, :, :, 0] * 255).astype(np.uint8), mode='L')
|
| 255 |
+
|
| 256 |
+
# Predict emotion and age on cropped face or full image
|
| 257 |
+
emotion_result = predict_emotion(cropped_face)
|
| 258 |
+
age_result = predict_age(cropped_face)
|
| 259 |
+
|
| 260 |
+
if "error" in emotion_result or "error" in age_result:
|
| 261 |
+
error_msg = emotion_result.get("error", "") or age_result.get("error", "")
|
| 262 |
+
return f"Error: {error_msg}", {}, f"Error: {error_msg}", {}, cropped_face, None, face_msg
|
| 263 |
+
|
| 264 |
+
return (
|
| 265 |
+
f"{emotion_result['predicted_emotion']} ({emotion_result['confidence']:.2f})",
|
| 266 |
+
emotion_result["all_confidences"],
|
| 267 |
+
f"{age_result['predicted_age']} ({age_result['confidence']:.2f})",
|
| 268 |
+
age_result["all_confidences"],
|
| 269 |
+
cropped_face, # Show the cropped face or full image
|
| 270 |
+
processed_display, # Show the processed 48x48 grayscale
|
| 271 |
+
face_msg # Face detection message
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
demo = gr.Interface(
|
| 275 |
+
fn=gradio_wrapper,
|
| 276 |
+
inputs=gr.Image(type="pil", label="Upload Face Image"),
|
| 277 |
+
outputs=[
|
| 278 |
+
gr.Label(num_top_classes=1, label="Top Emotion"),
|
| 279 |
+
gr.Label(label="Emotion Probabilities"),
|
| 280 |
+
gr.Label(num_top_classes=1, label="Top Age Group"),
|
| 281 |
+
gr.Label(label="Age Probabilities"),
|
| 282 |
+
gr.Image(type="pil", label="Detected & Cropped Face"),
|
| 283 |
+
gr.Image(type="pil", label="Processed Image (48x48 Grayscale)"),
|
| 284 |
+
gr.Textbox(label="Face Detection Status")
|
| 285 |
+
],
|
| 286 |
+
title="Face Emotion + Age Detection with Face Cropping",
|
| 287 |
+
description="Upload an image with a face. The system will:\n1. Detect and crop the face (or use full image if no face found)\n2. Analyze emotion (Angry, Happy, etc.)\n3. Estimate age group (01-10, 11-20, ... 80+)\n4. Show the processing steps",
|
| 288 |
+
examples=None
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
# Mount Gradio at /gradio
|
| 292 |
+
app = gr.mount_gradio_app(app, demo, path="/gradio")
|
| 293 |
+
|
| 294 |
+
# ----------------- RUN -----------------
|
| 295 |
+
if __name__ == "__main__":
|
| 296 |
+
logger.info("="*70)
|
| 297 |
+
logger.info("Starting Face Emotion + Age Detection Server")
|
| 298 |
+
logger.info("="*70)
|
| 299 |
+
logger.info(f"Emotion Model Input Shape: {emotion_model.input_shape}")
|
| 300 |
+
logger.info(f"Emotion Model Output Shape: {emotion_model.output_shape}")
|
| 301 |
+
logger.info(f"Number of emotion classes: {len(emotions)}")
|
| 302 |
+
logger.info("")
|
| 303 |
+
logger.info("Server will be available at:")
|
| 304 |
+
logger.info(" - Main API: http://0.0.0.0:7860")
|
| 305 |
+
logger.info(" - Gradio UI: http://0.0.0.0:7860/gradio")
|
| 306 |
+
logger.info("="*70)
|
| 307 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
facialTraning.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
haarcascade_frontalface_default.xml
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
my_model3.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cbd3e9a744259c153c1c1294982a799dc1cbe1c466d7b0ebbde034bfffde7d1b
|
| 3 |
+
size 5389816
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
transformers>=4.30.0
|
| 3 |
+
pillow>=9.0.0
|
| 4 |
+
torch>=2.0.0
|
| 5 |
+
numpy>=1.23.0,<2.0.0
|
| 6 |
+
fastapi>=0.100.0
|
| 7 |
+
uvicorn>=0.23.0
|
| 8 |
+
python-multipart>=0.0.6
|
| 9 |
+
tensorflow==2.12.0
|
| 10 |
+
keras==2.12.0
|
| 11 |
+
h5py==3.8.0
|
| 12 |
+
opencv-python>=4.8.0
|