Upload 2 files
Browse files- app.py +151 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import ViTImageProcessor, ViTForImageClassification
|
| 3 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import torch
|
| 6 |
+
from fastapi import FastAPI, UploadFile, File
|
| 7 |
+
from fastapi.responses import JSONResponse
|
| 8 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 9 |
+
import uvicorn
|
| 10 |
+
import io
|
| 11 |
+
import logging
|
| 12 |
+
|
| 13 |
+
# ----------------- LOGGER SETUP -----------------
|
| 14 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 15 |
+
logger = logging.getLogger("face-analysis")
|
| 16 |
+
|
| 17 |
+
# ----------------- LOAD MODELS -----------------
|
| 18 |
+
# Emotion model
|
| 19 |
+
emotion_processor = ViTImageProcessor.from_pretrained("abhilash88/face-emotion-detection")
|
| 20 |
+
emotion_model = ViTForImageClassification.from_pretrained("abhilash88/face-emotion-detection")
|
| 21 |
+
|
| 22 |
+
# Age model
|
| 23 |
+
age_model_name = "prithivMLmods/facial-age-detection"
|
| 24 |
+
age_model = SiglipForImageClassification.from_pretrained(age_model_name)
|
| 25 |
+
age_processor = AutoImageProcessor.from_pretrained(age_model_name)
|
| 26 |
+
|
| 27 |
+
# Emotion classes
|
| 28 |
+
emotions = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]
|
| 29 |
+
|
| 30 |
+
# Age labels
|
| 31 |
+
id2label = {
|
| 32 |
+
"0": "age 01-10",
|
| 33 |
+
"1": "age 11-20",
|
| 34 |
+
"2": "age 21-30",
|
| 35 |
+
"3": "age 31-40",
|
| 36 |
+
"4": "age 41-55",
|
| 37 |
+
"5": "age 56-65",
|
| 38 |
+
"6": "age 66-80",
|
| 39 |
+
"7": "age 80+"
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
# ----------------- PREDICT FUNCTIONS -----------------
|
| 43 |
+
def predict_emotion(image: Image.Image):
|
| 44 |
+
try:
|
| 45 |
+
inputs = emotion_processor(image.convert("RGB"), return_tensors="pt")
|
| 46 |
+
with torch.no_grad():
|
| 47 |
+
outputs = emotion_model(**inputs)
|
| 48 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)[0]
|
| 49 |
+
idx = torch.argmax(probs).item()
|
| 50 |
+
|
| 51 |
+
result = {
|
| 52 |
+
"predicted_emotion": emotions[idx],
|
| 53 |
+
"confidence": round(probs[idx].item(), 4),
|
| 54 |
+
"all_confidences": {emotions[i]: float(probs[i]) for i in range(len(emotions))}
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
logger.info(f"Predicted Emotion: {result['predicted_emotion']} (Confidence: {result['confidence']})")
|
| 58 |
+
return result
|
| 59 |
+
except Exception as e:
|
| 60 |
+
logger.error(f"Emotion prediction error: {e}")
|
| 61 |
+
return {"error": str(e)}
|
| 62 |
+
|
| 63 |
+
def predict_age(image: Image.Image):
|
| 64 |
+
try:
|
| 65 |
+
inputs = age_processor(images=image.convert("RGB"), return_tensors="pt")
|
| 66 |
+
with torch.no_grad():
|
| 67 |
+
outputs = age_model(**inputs)
|
| 68 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1).squeeze().tolist()
|
| 69 |
+
prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
| 70 |
+
idx = int(torch.argmax(torch.tensor(probs)))
|
| 71 |
+
|
| 72 |
+
result = {
|
| 73 |
+
"predicted_age": id2label[str(idx)],
|
| 74 |
+
"confidence": round(probs[idx], 4),
|
| 75 |
+
"all_confidences": prediction
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
logger.info(f"Predicted Age Group: {result['predicted_age']} (Confidence: {result['confidence']})")
|
| 79 |
+
return result
|
| 80 |
+
except Exception as e:
|
| 81 |
+
logger.error(f"Age prediction error: {e}")
|
| 82 |
+
return {"error": str(e)}
|
| 83 |
+
|
| 84 |
+
# ----------------- FASTAPI APP -----------------
|
| 85 |
+
app = FastAPI()
|
| 86 |
+
|
| 87 |
+
app.add_middleware(
|
| 88 |
+
CORSMiddleware,
|
| 89 |
+
allow_origins=["*"],
|
| 90 |
+
allow_credentials=True,
|
| 91 |
+
allow_methods=["*"],
|
| 92 |
+
allow_headers=["*"],
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
@app.get("/health")
|
| 96 |
+
async def health():
|
| 97 |
+
return {"status": "ok"}
|
| 98 |
+
|
| 99 |
+
@app.post("/predict")
|
| 100 |
+
async def predict(file: UploadFile = File(...)):
|
| 101 |
+
try:
|
| 102 |
+
contents = await file.read()
|
| 103 |
+
image = Image.open(io.BytesIO(contents))
|
| 104 |
+
|
| 105 |
+
emotion_result = predict_emotion(image)
|
| 106 |
+
age_result = predict_age(image)
|
| 107 |
+
|
| 108 |
+
logger.info(f"API Response -> Emotion: {emotion_result.get('predicted_emotion')} | Age: {age_result.get('predicted_age')}")
|
| 109 |
+
|
| 110 |
+
return JSONResponse(content={
|
| 111 |
+
"emotion": emotion_result,
|
| 112 |
+
"age": age_result
|
| 113 |
+
})
|
| 114 |
+
except Exception as e:
|
| 115 |
+
logger.error(f"API Error: {e}")
|
| 116 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
| 117 |
+
|
| 118 |
+
# ----------------- GRADIO DEMO -----------------
|
| 119 |
+
def gradio_wrapper(image):
|
| 120 |
+
emotion_result = predict_emotion(image)
|
| 121 |
+
age_result = predict_age(image)
|
| 122 |
+
|
| 123 |
+
if "error" in emotion_result or "error" in age_result:
|
| 124 |
+
return "Error", {}, "Error", {}
|
| 125 |
+
|
| 126 |
+
return (
|
| 127 |
+
f"{emotion_result['predicted_emotion']} ({emotion_result['confidence']:.2f})",
|
| 128 |
+
emotion_result["all_confidences"],
|
| 129 |
+
f"{age_result['predicted_age']} ({age_result['confidence']:.2f})",
|
| 130 |
+
age_result["all_confidences"]
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
demo = gr.Interface(
|
| 134 |
+
fn=gradio_wrapper,
|
| 135 |
+
inputs=gr.Image(type="pil"),
|
| 136 |
+
outputs=[
|
| 137 |
+
gr.Label(num_top_classes=1, label="Top Emotion"),
|
| 138 |
+
gr.Label(label="Emotion Probabilities"),
|
| 139 |
+
gr.Label(num_top_classes=1, label="Top Age Group"),
|
| 140 |
+
gr.Label(label="Age Probabilities"),
|
| 141 |
+
],
|
| 142 |
+
title="Face Emotion + Age Detection",
|
| 143 |
+
description="Upload a face image and detect both emotion (Angry, Happy, etc.) and estimated age group (01–10, 11–20, ... 80+)."
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
# Mount Gradio at /gradio
|
| 147 |
+
app = gr.mount_gradio_app(app, demo, path="/gradio")
|
| 148 |
+
|
| 149 |
+
# ----------------- RUN -----------------
|
| 150 |
+
if __name__ == "__main__":
|
| 151 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
gradio
|
| 4 |
+
pillow
|