Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,701 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
AI-Powered Web Scraper - app.py
|
| 3 |
+
Professional-grade web content extraction and AI summarization tool for Hugging Face Spaces
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import requests
|
| 8 |
+
from bs4 import BeautifulSoup
|
| 9 |
+
from urllib.parse import urljoin, urlparse
|
| 10 |
+
import pandas as pd
|
| 11 |
+
from datetime import datetime
|
| 12 |
+
import json
|
| 13 |
+
import re
|
| 14 |
+
import time
|
| 15 |
+
from typing import List, Dict, Optional, Tuple
|
| 16 |
+
import logging
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
import os
|
| 19 |
+
from dataclasses import dataclass
|
| 20 |
+
from transformers import pipeline
|
| 21 |
+
import nltk
|
| 22 |
+
from nltk.tokenize import sent_tokenize
|
| 23 |
+
import asyncio
|
| 24 |
+
import aiohttp
|
| 25 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 26 |
+
import hashlib
|
| 27 |
+
|
| 28 |
+
# Download required NLTK data
|
| 29 |
+
try:
|
| 30 |
+
nltk.data.find('tokenizers/punkt')
|
| 31 |
+
except LookupError:
|
| 32 |
+
nltk.download('punkt', quiet=True)
|
| 33 |
+
|
| 34 |
+
# Configure logging
|
| 35 |
+
logging.basicConfig(level=logging.INFO)
|
| 36 |
+
logger = logging.getLogger(__name__)
|
| 37 |
+
|
| 38 |
+
@dataclass
|
| 39 |
+
class ScrapedContent:
|
| 40 |
+
"""Data class for scraped content with metadata"""
|
| 41 |
+
url: str
|
| 42 |
+
title: str
|
| 43 |
+
content: str
|
| 44 |
+
summary: str
|
| 45 |
+
word_count: int
|
| 46 |
+
reading_time: int
|
| 47 |
+
extracted_at: str
|
| 48 |
+
author: Optional[str] = None
|
| 49 |
+
publish_date: Optional[str] = None
|
| 50 |
+
meta_description: Optional[str] = None
|
| 51 |
+
keywords: List[str] = None
|
| 52 |
+
|
| 53 |
+
class SecurityValidator:
|
| 54 |
+
"""Security validation for URLs and content"""
|
| 55 |
+
|
| 56 |
+
ALLOWED_SCHEMES = {'http', 'https'}
|
| 57 |
+
BLOCKED_DOMAINS = {
|
| 58 |
+
'localhost', '127.0.0.1', '0.0.0.0',
|
| 59 |
+
'192.168.', '10.', '172.16.', '172.17.',
|
| 60 |
+
'172.18.', '172.19.', '172.20.', '172.21.',
|
| 61 |
+
'172.22.', '172.23.', '172.24.', '172.25.',
|
| 62 |
+
'172.26.', '172.27.', '172.28.', '172.29.',
|
| 63 |
+
'172.30.', '172.31.'
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
@classmethod
|
| 67 |
+
def validate_url(cls, url: str) -> Tuple[bool, str]:
|
| 68 |
+
"""Validate URL for security concerns"""
|
| 69 |
+
try:
|
| 70 |
+
parsed = urlparse(url)
|
| 71 |
+
|
| 72 |
+
# Check scheme
|
| 73 |
+
if parsed.scheme not in cls.ALLOWED_SCHEMES:
|
| 74 |
+
return False, f"Invalid scheme: {parsed.scheme}. Only HTTP/HTTPS allowed."
|
| 75 |
+
|
| 76 |
+
# Check for blocked domains
|
| 77 |
+
hostname = parsed.hostname or ''
|
| 78 |
+
if any(blocked in hostname for blocked in cls.BLOCKED_DOMAINS):
|
| 79 |
+
return False, "Access to internal/local networks is not allowed."
|
| 80 |
+
|
| 81 |
+
# Basic malformed URL check
|
| 82 |
+
if not parsed.netloc:
|
| 83 |
+
return False, "Invalid URL format."
|
| 84 |
+
|
| 85 |
+
return True, "URL is valid."
|
| 86 |
+
|
| 87 |
+
except Exception as e:
|
| 88 |
+
return False, f"URL validation error: {str(e)}"
|
| 89 |
+
|
| 90 |
+
class RobotsTxtChecker:
|
| 91 |
+
"""Check robots.txt compliance"""
|
| 92 |
+
|
| 93 |
+
@staticmethod
|
| 94 |
+
def can_fetch(url: str, user_agent: str = "*") -> bool:
|
| 95 |
+
"""Check if URL can be fetched according to robots.txt"""
|
| 96 |
+
try:
|
| 97 |
+
parsed_url = urlparse(url)
|
| 98 |
+
robots_url = f"{parsed_url.scheme}://{parsed_url.netloc}/robots.txt"
|
| 99 |
+
|
| 100 |
+
response = requests.get(robots_url, timeout=5)
|
| 101 |
+
if response.status_code == 200:
|
| 102 |
+
# Simple robots.txt parsing (basic implementation)
|
| 103 |
+
lines = response.text.split('\n')
|
| 104 |
+
user_agent_section = False
|
| 105 |
+
|
| 106 |
+
for line in lines:
|
| 107 |
+
line = line.strip()
|
| 108 |
+
if line.startswith('User-agent:'):
|
| 109 |
+
agent = line.split(':', 1)[1].strip()
|
| 110 |
+
user_agent_section = agent == '*' or agent.lower() == user_agent.lower()
|
| 111 |
+
elif user_agent_section and line.startswith('Disallow:'):
|
| 112 |
+
disallowed = line.split(':', 1)[1].strip()
|
| 113 |
+
if disallowed and url.endswith(disallowed):
|
| 114 |
+
return False
|
| 115 |
+
|
| 116 |
+
return True
|
| 117 |
+
|
| 118 |
+
except Exception:
|
| 119 |
+
# If robots.txt can't be fetched, assume allowed
|
| 120 |
+
return True
|
| 121 |
+
|
| 122 |
+
class ContentExtractor:
|
| 123 |
+
"""Advanced content extraction with multiple strategies"""
|
| 124 |
+
|
| 125 |
+
def __init__(self):
|
| 126 |
+
self.session = requests.Session()
|
| 127 |
+
self.session.headers.update({
|
| 128 |
+
'User-Agent': 'Mozilla/5.0 (compatible; AI-WebScraper/1.0; Research Tool)',
|
| 129 |
+
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
|
| 130 |
+
'Accept-Language': 'en-US,en;q=0.5',
|
| 131 |
+
'Accept-Encoding': 'gzip, deflate',
|
| 132 |
+
'Connection': 'keep-alive',
|
| 133 |
+
'Upgrade-Insecure-Requests': '1',
|
| 134 |
+
})
|
| 135 |
+
|
| 136 |
+
def extract_content(self, url: str) -> Optional[ScrapedContent]:
|
| 137 |
+
"""Extract content from URL with robust error handling"""
|
| 138 |
+
try:
|
| 139 |
+
# Security validation
|
| 140 |
+
is_valid, validation_msg = SecurityValidator.validate_url(url)
|
| 141 |
+
if not is_valid:
|
| 142 |
+
raise ValueError(f"Security validation failed: {validation_msg}")
|
| 143 |
+
|
| 144 |
+
# Check robots.txt
|
| 145 |
+
if not RobotsTxtChecker.can_fetch(url):
|
| 146 |
+
raise ValueError("robots.txt disallows scraping this URL")
|
| 147 |
+
|
| 148 |
+
# Fetch content
|
| 149 |
+
response = self.session.get(url, timeout=15)
|
| 150 |
+
response.raise_for_status()
|
| 151 |
+
|
| 152 |
+
# Parse HTML
|
| 153 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
| 154 |
+
|
| 155 |
+
# Extract metadata
|
| 156 |
+
title = self._extract_title(soup)
|
| 157 |
+
author = self._extract_author(soup)
|
| 158 |
+
publish_date = self._extract_publish_date(soup)
|
| 159 |
+
meta_description = self._extract_meta_description(soup)
|
| 160 |
+
|
| 161 |
+
# Extract main content
|
| 162 |
+
content = self._extract_main_content(soup)
|
| 163 |
+
|
| 164 |
+
if not content or len(content.strip()) < 100:
|
| 165 |
+
raise ValueError("Insufficient content extracted")
|
| 166 |
+
|
| 167 |
+
# Calculate metrics
|
| 168 |
+
word_count = len(content.split())
|
| 169 |
+
reading_time = max(1, word_count // 200) # Average reading speed
|
| 170 |
+
|
| 171 |
+
# Extract keywords
|
| 172 |
+
keywords = self._extract_keywords(content)
|
| 173 |
+
|
| 174 |
+
return ScrapedContent(
|
| 175 |
+
url=url,
|
| 176 |
+
title=title,
|
| 177 |
+
content=content,
|
| 178 |
+
summary="", # Will be filled by AI summarizer
|
| 179 |
+
word_count=word_count,
|
| 180 |
+
reading_time=reading_time,
|
| 181 |
+
extracted_at=datetime.now().isoformat(),
|
| 182 |
+
author=author,
|
| 183 |
+
publish_date=publish_date,
|
| 184 |
+
meta_description=meta_description,
|
| 185 |
+
keywords=keywords
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
except Exception as e:
|
| 189 |
+
logger.error(f"Content extraction failed for {url}: {str(e)}")
|
| 190 |
+
raise
|
| 191 |
+
|
| 192 |
+
def _extract_title(self, soup: BeautifulSoup) -> str:
|
| 193 |
+
"""Extract page title with fallbacks"""
|
| 194 |
+
# Try meta og:title first
|
| 195 |
+
og_title = soup.find('meta', property='og:title')
|
| 196 |
+
if og_title and og_title.get('content'):
|
| 197 |
+
return og_title['content'].strip()
|
| 198 |
+
|
| 199 |
+
# Try regular title tag
|
| 200 |
+
title_tag = soup.find('title')
|
| 201 |
+
if title_tag:
|
| 202 |
+
return title_tag.get_text().strip()
|
| 203 |
+
|
| 204 |
+
# Try h1 as fallback
|
| 205 |
+
h1_tag = soup.find('h1')
|
| 206 |
+
if h1_tag:
|
| 207 |
+
return h1_tag.get_text().strip()
|
| 208 |
+
|
| 209 |
+
return "No title found"
|
| 210 |
+
|
| 211 |
+
def _extract_author(self, soup: BeautifulSoup) -> Optional[str]:
|
| 212 |
+
"""Extract author information"""
|
| 213 |
+
# Try multiple selectors for author
|
| 214 |
+
author_selectors = [
|
| 215 |
+
'meta[name="author"]',
|
| 216 |
+
'meta[property="article:author"]',
|
| 217 |
+
'.author',
|
| 218 |
+
'.byline',
|
| 219 |
+
'[rel="author"]'
|
| 220 |
+
]
|
| 221 |
+
|
| 222 |
+
for selector in author_selectors:
|
| 223 |
+
element = soup.select_one(selector)
|
| 224 |
+
if element:
|
| 225 |
+
if element.name == 'meta':
|
| 226 |
+
return element.get('content', '').strip()
|
| 227 |
+
else:
|
| 228 |
+
return element.get_text().strip()
|
| 229 |
+
|
| 230 |
+
return None
|
| 231 |
+
|
| 232 |
+
def _extract_publish_date(self, soup: BeautifulSoup) -> Optional[str]:
|
| 233 |
+
"""Extract publication date"""
|
| 234 |
+
date_selectors = [
|
| 235 |
+
'meta[property="article:published_time"]',
|
| 236 |
+
'meta[name="publishdate"]',
|
| 237 |
+
'time[datetime]',
|
| 238 |
+
'.publish-date',
|
| 239 |
+
'.date'
|
| 240 |
+
]
|
| 241 |
+
|
| 242 |
+
for selector in date_selectors:
|
| 243 |
+
element = soup.select_one(selector)
|
| 244 |
+
if element:
|
| 245 |
+
if element.name == 'meta':
|
| 246 |
+
return element.get('content', '').strip()
|
| 247 |
+
elif element.name == 'time':
|
| 248 |
+
return element.get('datetime', '').strip()
|
| 249 |
+
else:
|
| 250 |
+
return element.get_text().strip()
|
| 251 |
+
|
| 252 |
+
return None
|
| 253 |
+
|
| 254 |
+
def _extract_meta_description(self, soup: BeautifulSoup) -> Optional[str]:
|
| 255 |
+
"""Extract meta description"""
|
| 256 |
+
meta_desc = soup.find('meta', attrs={'name': 'description'})
|
| 257 |
+
if meta_desc:
|
| 258 |
+
return meta_desc.get('content', '').strip()
|
| 259 |
+
|
| 260 |
+
og_desc = soup.find('meta', property='og:description')
|
| 261 |
+
if og_desc:
|
| 262 |
+
return og_desc.get('content', '').strip()
|
| 263 |
+
|
| 264 |
+
return None
|
| 265 |
+
|
| 266 |
+
def _extract_main_content(self, soup: BeautifulSoup) -> str:
|
| 267 |
+
"""Extract main content with multiple strategies"""
|
| 268 |
+
# Remove unwanted elements
|
| 269 |
+
for element in soup(['script', 'style', 'nav', 'header', 'footer',
|
| 270 |
+
'aside', 'advertisement', '.ads', '.sidebar']):
|
| 271 |
+
element.decompose()
|
| 272 |
+
|
| 273 |
+
# Try content-specific selectors first
|
| 274 |
+
content_selectors = [
|
| 275 |
+
'article',
|
| 276 |
+
'main',
|
| 277 |
+
'.content',
|
| 278 |
+
'.post-content',
|
| 279 |
+
'.entry-content',
|
| 280 |
+
'.article-body',
|
| 281 |
+
'#content',
|
| 282 |
+
'.story-body'
|
| 283 |
+
]
|
| 284 |
+
|
| 285 |
+
for selector in content_selectors:
|
| 286 |
+
element = soup.select_one(selector)
|
| 287 |
+
if element:
|
| 288 |
+
text = element.get_text(separator=' ', strip=True)
|
| 289 |
+
if len(text) > 200: # Minimum content threshold
|
| 290 |
+
return self._clean_text(text)
|
| 291 |
+
|
| 292 |
+
# Fallback: extract from body
|
| 293 |
+
body = soup.find('body')
|
| 294 |
+
if body:
|
| 295 |
+
text = body.get_text(separator=' ', strip=True)
|
| 296 |
+
return self._clean_text(text)
|
| 297 |
+
|
| 298 |
+
# Last resort: all text
|
| 299 |
+
return self._clean_text(soup.get_text(separator=' ', strip=True))
|
| 300 |
+
|
| 301 |
+
def _clean_text(self, text: str) -> str:
|
| 302 |
+
"""Clean extracted text"""
|
| 303 |
+
# Remove extra whitespace
|
| 304 |
+
text = re.sub(r'\s+', ' ', text)
|
| 305 |
+
|
| 306 |
+
# Remove common unwanted patterns
|
| 307 |
+
text = re.sub(r'Subscribe.*?newsletter', '', text, flags=re.IGNORECASE)
|
| 308 |
+
text = re.sub(r'Click here.*?more', '', text, flags=re.IGNORECASE)
|
| 309 |
+
text = re.sub(r'Advertisement', '', text, flags=re.IGNORECASE)
|
| 310 |
+
|
| 311 |
+
return text.strip()
|
| 312 |
+
|
| 313 |
+
def _extract_keywords(self, content: str) -> List[str]:
|
| 314 |
+
"""Extract basic keywords from content"""
|
| 315 |
+
# Simple keyword extraction (can be enhanced with NLP)
|
| 316 |
+
words = re.findall(r'\b[A-Za-z]{4,}\b', content.lower())
|
| 317 |
+
word_freq = {}
|
| 318 |
+
|
| 319 |
+
for word in words:
|
| 320 |
+
if word not in ['that', 'this', 'with', 'from', 'they', 'have', 'been', 'were', 'said']:
|
| 321 |
+
word_freq[word] = word_freq.get(word, 0) + 1
|
| 322 |
+
|
| 323 |
+
# Return top 10 keywords
|
| 324 |
+
sorted_words = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)
|
| 325 |
+
return [word for word, freq in sorted_words[:10]]
|
| 326 |
+
|
| 327 |
+
class AISummarizer:
|
| 328 |
+
"""AI-powered content summarization"""
|
| 329 |
+
|
| 330 |
+
def __init__(self):
|
| 331 |
+
self.summarizer = None
|
| 332 |
+
self._load_model()
|
| 333 |
+
|
| 334 |
+
def _load_model(self):
|
| 335 |
+
"""Load summarization model with error handling"""
|
| 336 |
+
try:
|
| 337 |
+
self.summarizer = pipeline(
|
| 338 |
+
"summarization",
|
| 339 |
+
model="facebook/bart-large-cnn",
|
| 340 |
+
tokenizer="facebook/bart-large-cnn"
|
| 341 |
+
)
|
| 342 |
+
logger.info("Summarization model loaded successfully")
|
| 343 |
+
except Exception as e:
|
| 344 |
+
logger.error(f"Failed to load summarization model: {e}")
|
| 345 |
+
# Fallback to a smaller model
|
| 346 |
+
try:
|
| 347 |
+
self.summarizer = pipeline(
|
| 348 |
+
"summarization",
|
| 349 |
+
model="sshleifer/distilbart-cnn-12-6"
|
| 350 |
+
)
|
| 351 |
+
logger.info("Fallback summarization model loaded")
|
| 352 |
+
except Exception as e2:
|
| 353 |
+
logger.error(f"Failed to load fallback model: {e2}")
|
| 354 |
+
self.summarizer = None
|
| 355 |
+
|
| 356 |
+
def summarize(self, content: str, max_length: int = 300) -> str:
|
| 357 |
+
"""Generate AI summary of content"""
|
| 358 |
+
if not self.summarizer:
|
| 359 |
+
return self._extractive_summary(content)
|
| 360 |
+
|
| 361 |
+
try:
|
| 362 |
+
# Split content into chunks if too long
|
| 363 |
+
max_input_length = 1024
|
| 364 |
+
chunks = self._split_content(content, max_input_length)
|
| 365 |
+
|
| 366 |
+
summaries = []
|
| 367 |
+
for chunk in chunks:
|
| 368 |
+
if len(chunk.split()) < 20: # Skip very short chunks
|
| 369 |
+
continue
|
| 370 |
+
|
| 371 |
+
result = self.summarizer(
|
| 372 |
+
chunk,
|
| 373 |
+
max_length=min(max_length, len(chunk.split()) // 2),
|
| 374 |
+
min_length=30,
|
| 375 |
+
do_sample=False
|
| 376 |
+
)
|
| 377 |
+
summaries.append(result[0]['summary_text'])
|
| 378 |
+
|
| 379 |
+
# Combine summaries
|
| 380 |
+
combined = ' '.join(summaries)
|
| 381 |
+
|
| 382 |
+
# If still too long, summarize again
|
| 383 |
+
if len(combined.split()) > max_length:
|
| 384 |
+
result = self.summarizer(
|
| 385 |
+
combined,
|
| 386 |
+
max_length=max_length,
|
| 387 |
+
min_length=50,
|
| 388 |
+
do_sample=False
|
| 389 |
+
)
|
| 390 |
+
return result[0]['summary_text']
|
| 391 |
+
|
| 392 |
+
return combined
|
| 393 |
+
|
| 394 |
+
except Exception as e:
|
| 395 |
+
logger.error(f"AI summarization failed: {e}")
|
| 396 |
+
return self._extractive_summary(content)
|
| 397 |
+
|
| 398 |
+
def _split_content(self, content: str, max_length: int) -> List[str]:
|
| 399 |
+
"""Split content into manageable chunks"""
|
| 400 |
+
sentences = sent_tokenize(content)
|
| 401 |
+
chunks = []
|
| 402 |
+
current_chunk = []
|
| 403 |
+
current_length = 0
|
| 404 |
+
|
| 405 |
+
for sentence in sentences:
|
| 406 |
+
sentence_length = len(sentence.split())
|
| 407 |
+
if current_length + sentence_length > max_length and current_chunk:
|
| 408 |
+
chunks.append(' '.join(current_chunk))
|
| 409 |
+
current_chunk = [sentence]
|
| 410 |
+
current_length = sentence_length
|
| 411 |
+
else:
|
| 412 |
+
current_chunk.append(sentence)
|
| 413 |
+
current_length += sentence_length
|
| 414 |
+
|
| 415 |
+
if current_chunk:
|
| 416 |
+
chunks.append(' '.join(current_chunk))
|
| 417 |
+
|
| 418 |
+
return chunks
|
| 419 |
+
|
| 420 |
+
def _extractive_summary(self, content: str) -> str:
|
| 421 |
+
"""Fallback extractive summarization"""
|
| 422 |
+
sentences = sent_tokenize(content)
|
| 423 |
+
if len(sentences) <= 3:
|
| 424 |
+
return content
|
| 425 |
+
|
| 426 |
+
# Simple extractive approach: take first, middle, and last sentences
|
| 427 |
+
summary_sentences = [
|
| 428 |
+
sentences[0],
|
| 429 |
+
sentences[len(sentences) // 2],
|
| 430 |
+
sentences[-1]
|
| 431 |
+
]
|
| 432 |
+
|
| 433 |
+
return ' '.join(summary_sentences)
|
| 434 |
+
|
| 435 |
+
class WebScraperApp:
|
| 436 |
+
"""Main application class"""
|
| 437 |
+
|
| 438 |
+
def __init__(self):
|
| 439 |
+
self.extractor = ContentExtractor()
|
| 440 |
+
self.summarizer = AISummarizer()
|
| 441 |
+
self.scraped_data = []
|
| 442 |
+
|
| 443 |
+
def process_url(self, url: str, summary_length: int = 300) -> Tuple[str, str, str, str]:
|
| 444 |
+
"""Process a single URL and return results"""
|
| 445 |
+
try:
|
| 446 |
+
if not url.strip():
|
| 447 |
+
return "β Error", "Please enter a valid URL", "", ""
|
| 448 |
+
|
| 449 |
+
# Add protocol if missing
|
| 450 |
+
if not url.startswith(('http://', 'https://')):
|
| 451 |
+
url = 'https://' + url
|
| 452 |
+
|
| 453 |
+
# Extract content
|
| 454 |
+
with gr.update(): # Show progress
|
| 455 |
+
scraped_content = self.extractor.extract_content(url)
|
| 456 |
+
|
| 457 |
+
# Generate summary
|
| 458 |
+
summary = self.summarizer.summarize(scraped_content.content, summary_length)
|
| 459 |
+
scraped_content.summary = summary
|
| 460 |
+
|
| 461 |
+
# Store result
|
| 462 |
+
self.scraped_data.append(scraped_content)
|
| 463 |
+
|
| 464 |
+
# Format results
|
| 465 |
+
metadata = f"""
|
| 466 |
+
**π Content Analysis**
|
| 467 |
+
- **Title:** {scraped_content.title}
|
| 468 |
+
- **Author:** {scraped_content.author or 'Not found'}
|
| 469 |
+
- **Published:** {scraped_content.publish_date or 'Not found'}
|
| 470 |
+
- **Word Count:** {scraped_content.word_count:,}
|
| 471 |
+
- **Reading Time:** {scraped_content.reading_time} minutes
|
| 472 |
+
- **Extracted:** {scraped_content.extracted_at}
|
| 473 |
+
"""
|
| 474 |
+
|
| 475 |
+
keywords_text = f"**π·οΈ Keywords:** {', '.join(scraped_content.keywords[:10])}" if scraped_content.keywords else ""
|
| 476 |
+
|
| 477 |
+
return (
|
| 478 |
+
"β
Success",
|
| 479 |
+
metadata,
|
| 480 |
+
f"**π AI Summary ({len(summary.split())} words):**\n\n{summary}",
|
| 481 |
+
keywords_text
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
except Exception as e:
|
| 485 |
+
error_msg = f"Failed to process URL: {str(e)}"
|
| 486 |
+
logger.error(error_msg)
|
| 487 |
+
return "β Error", error_msg, "", ""
|
| 488 |
+
|
| 489 |
+
def export_data(self, format_type: str) -> str:
|
| 490 |
+
"""Export scraped data to file"""
|
| 491 |
+
if not self.scraped_data:
|
| 492 |
+
return "No data to export"
|
| 493 |
+
|
| 494 |
+
try:
|
| 495 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 496 |
+
|
| 497 |
+
if format_type == "CSV":
|
| 498 |
+
filename = f"scraped_data_{timestamp}.csv"
|
| 499 |
+
df = pd.DataFrame([
|
| 500 |
+
{
|
| 501 |
+
'URL': item.url,
|
| 502 |
+
'Title': item.title,
|
| 503 |
+
'Author': item.author,
|
| 504 |
+
'Published': item.publish_date,
|
| 505 |
+
'Word Count': item.word_count,
|
| 506 |
+
'Reading Time': item.reading_time,
|
| 507 |
+
'Summary': item.summary,
|
| 508 |
+
'Keywords': ', '.join(item.keywords) if item.keywords else '',
|
| 509 |
+
'Extracted At': item.extracted_at
|
| 510 |
+
}
|
| 511 |
+
for item in self.scraped_data
|
| 512 |
+
])
|
| 513 |
+
df.to_csv(filename, index=False)
|
| 514 |
+
|
| 515 |
+
elif format_type == "JSON":
|
| 516 |
+
filename = f"scraped_data_{timestamp}.json"
|
| 517 |
+
data = [
|
| 518 |
+
{
|
| 519 |
+
'url': item.url,
|
| 520 |
+
'title': item.title,
|
| 521 |
+
'content': item.content,
|
| 522 |
+
'summary': item.summary,
|
| 523 |
+
'metadata': {
|
| 524 |
+
'author': item.author,
|
| 525 |
+
'publish_date': item.publish_date,
|
| 526 |
+
'word_count': item.word_count,
|
| 527 |
+
'reading_time': item.reading_time,
|
| 528 |
+
'keywords': item.keywords,
|
| 529 |
+
'extracted_at': item.extracted_at
|
| 530 |
+
}
|
| 531 |
+
}
|
| 532 |
+
for item in self.scraped_data
|
| 533 |
+
]
|
| 534 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
| 535 |
+
json.dump(data, f, indent=2, ensure_ascii=False)
|
| 536 |
+
|
| 537 |
+
return filename
|
| 538 |
+
|
| 539 |
+
except Exception as e:
|
| 540 |
+
logger.error(f"Export failed: {e}")
|
| 541 |
+
return f"Export failed: {str(e)}"
|
| 542 |
+
|
| 543 |
+
def clear_data(self) -> str:
|
| 544 |
+
"""Clear all scraped data"""
|
| 545 |
+
self.scraped_data.clear()
|
| 546 |
+
return "Data cleared successfully"
|
| 547 |
+
|
| 548 |
+
def create_interface():
|
| 549 |
+
"""Create the Gradio interface"""
|
| 550 |
+
app = WebScraperApp()
|
| 551 |
+
|
| 552 |
+
# Custom CSS for professional appearance
|
| 553 |
+
custom_css = """
|
| 554 |
+
.gradio-container {
|
| 555 |
+
max-width: 1200px;
|
| 556 |
+
margin: auto;
|
| 557 |
+
}
|
| 558 |
+
.main-header {
|
| 559 |
+
text-align: center;
|
| 560 |
+
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
|
| 561 |
+
color: white;
|
| 562 |
+
padding: 2rem;
|
| 563 |
+
border-radius: 10px;
|
| 564 |
+
margin-bottom: 2rem;
|
| 565 |
+
}
|
| 566 |
+
.feature-box {
|
| 567 |
+
background: #f8f9fa;
|
| 568 |
+
border: 1px solid #e9ecef;
|
| 569 |
+
border-radius: 8px;
|
| 570 |
+
padding: 1.5rem;
|
| 571 |
+
margin: 1rem 0;
|
| 572 |
+
}
|
| 573 |
+
.status-success {
|
| 574 |
+
color: #28a745;
|
| 575 |
+
font-weight: bold;
|
| 576 |
+
}
|
| 577 |
+
.status-error {
|
| 578 |
+
color: #dc3545;
|
| 579 |
+
font-weight: bold;
|
| 580 |
+
}
|
| 581 |
+
"""
|
| 582 |
+
|
| 583 |
+
with gr.Blocks(css=custom_css, title="AI Web Scraper") as interface:
|
| 584 |
+
|
| 585 |
+
# Header
|
| 586 |
+
gr.HTML("""
|
| 587 |
+
<div class="main-header">
|
| 588 |
+
<h1>π€ AI-Powered Web Scraper</h1>
|
| 589 |
+
<p>Professional content extraction and summarization for journalists, analysts, and researchers</p>
|
| 590 |
+
</div>
|
| 591 |
+
""")
|
| 592 |
+
|
| 593 |
+
# Main interface
|
| 594 |
+
with gr.Row():
|
| 595 |
+
with gr.Column(scale=2):
|
| 596 |
+
# Input section
|
| 597 |
+
gr.HTML("<div class='feature-box'><h3>π‘ Content Extraction</h3></div>")
|
| 598 |
+
|
| 599 |
+
url_input = gr.Textbox(
|
| 600 |
+
label="Enter URL to scrape",
|
| 601 |
+
placeholder="https://example.com/article",
|
| 602 |
+
lines=1
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
with gr.Row():
|
| 606 |
+
summary_length = gr.Slider(
|
| 607 |
+
minimum=100,
|
| 608 |
+
maximum=500,
|
| 609 |
+
value=300,
|
| 610 |
+
step=50,
|
| 611 |
+
label="Summary Length (words)"
|
| 612 |
+
)
|
| 613 |
+
|
| 614 |
+
scrape_btn = gr.Button("π Extract & Summarize", variant="primary", size="lg")
|
| 615 |
+
|
| 616 |
+
# Results section
|
| 617 |
+
gr.HTML("<div class='feature-box'><h3>π Results</h3></div>")
|
| 618 |
+
|
| 619 |
+
status_output = gr.Textbox(label="Status", lines=1, interactive=False)
|
| 620 |
+
metadata_output = gr.Markdown(label="Metadata")
|
| 621 |
+
summary_output = gr.Markdown(label="AI Summary")
|
| 622 |
+
keywords_output = gr.Markdown(label="Keywords")
|
| 623 |
+
|
| 624 |
+
with gr.Column(scale=1):
|
| 625 |
+
# Export section
|
| 626 |
+
gr.HTML("<div class='feature-box'><h3>πΎ Export Options</h3></div>")
|
| 627 |
+
|
| 628 |
+
export_format = gr.Radio(
|
| 629 |
+
choices=["CSV", "JSON"],
|
| 630 |
+
label="Export Format",
|
| 631 |
+
value="CSV"
|
| 632 |
+
)
|
| 633 |
+
|
| 634 |
+
export_btn = gr.Button("π₯ Export Data", variant="secondary")
|
| 635 |
+
export_status = gr.Textbox(label="Export Status", lines=2, interactive=False)
|
| 636 |
+
|
| 637 |
+
gr.HTML("<div class='feature-box'><h3>π§Ή Data Management</h3></div>")
|
| 638 |
+
clear_btn = gr.Button("ποΈ Clear All Data", variant="secondary")
|
| 639 |
+
clear_status = gr.Textbox(label="Clear Status", lines=1, interactive=False)
|
| 640 |
+
|
| 641 |
+
# Usage instructions
|
| 642 |
+
with gr.Accordion("π Usage Instructions", open=False):
|
| 643 |
+
gr.Markdown("""
|
| 644 |
+
### How to Use This Tool
|
| 645 |
+
|
| 646 |
+
1. **Enter URL**: Paste the URL of the article or webpage you want to analyze
|
| 647 |
+
2. **Adjust Settings**: Set your preferred summary length
|
| 648 |
+
3. **Extract Content**: Click "Extract & Summarize" to process the content
|
| 649 |
+
4. **Review Results**: View the extracted metadata, AI summary, and keywords
|
| 650 |
+
5. **Export Data**: Save your results in CSV or JSON format
|
| 651 |
+
|
| 652 |
+
### Features
|
| 653 |
+
- π‘οΈ **Security**: Built-in URL validation and robots.txt compliance
|
| 654 |
+
- π€ **AI Summarization**: Advanced BART model for intelligent summarization
|
| 655 |
+
- π **Rich Metadata**: Author, publication date, reading time, and more
|
| 656 |
+
- π·οΈ **Keyword Extraction**: Automatic identification of key terms
|
| 657 |
+
- πΎ **Export Options**: CSV and JSON formats for further analysis
|
| 658 |
+
- π **Batch Processing**: Process multiple URLs and export all results
|
| 659 |
+
|
| 660 |
+
### Supported Content
|
| 661 |
+
- News articles and blog posts
|
| 662 |
+
- Research papers and reports
|
| 663 |
+
- Documentation and guides
|
| 664 |
+
- Most HTML-based content
|
| 665 |
+
|
| 666 |
+
### Limitations
|
| 667 |
+
- Respects robots.txt restrictions
|
| 668 |
+
- Cannot access password-protected content
|
| 669 |
+
- Some dynamic content may not be captured
|
| 670 |
+
- Processing time varies with content length
|
| 671 |
+
""")
|
| 672 |
+
|
| 673 |
+
# Event handlers
|
| 674 |
+
scrape_btn.click(
|
| 675 |
+
fn=app.process_url,
|
| 676 |
+
inputs=[url_input, summary_length],
|
| 677 |
+
outputs=[status_output, metadata_output, summary_output, keywords_output]
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
export_btn.click(
|
| 681 |
+
fn=app.export_data,
|
| 682 |
+
inputs=[export_format],
|
| 683 |
+
outputs=[export_status]
|
| 684 |
+
)
|
| 685 |
+
|
| 686 |
+
clear_btn.click(
|
| 687 |
+
fn=app.clear_data,
|
| 688 |
+
outputs=[clear_status]
|
| 689 |
+
)
|
| 690 |
+
|
| 691 |
+
return interface
|
| 692 |
+
|
| 693 |
+
# Launch the application
|
| 694 |
+
if __name__ == "__main__":
|
| 695 |
+
interface = create_interface()
|
| 696 |
+
interface.launch(
|
| 697 |
+
server_name="0.0.0.0",
|
| 698 |
+
server_port=7860,
|
| 699 |
+
share=False,
|
| 700 |
+
show_error=True
|
| 701 |
+
)
|