Create perplexity_client.py
Browse files- perplexity_client.py +724 -0
perplexity_client.py
ADDED
|
@@ -0,0 +1,724 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
π§ Perplexity AI Integration for AI Dataset Studio
|
| 3 |
+
Automatically discovers relevant sources based on project descriptions
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import requests
|
| 8 |
+
import json
|
| 9 |
+
import logging
|
| 10 |
+
import time
|
| 11 |
+
import re
|
| 12 |
+
from typing import List, Dict, Optional, Tuple
|
| 13 |
+
from urllib.parse import urlparse, urljoin
|
| 14 |
+
from dataclasses import dataclass
|
| 15 |
+
from enum import Enum
|
| 16 |
+
|
| 17 |
+
# Configure logging
|
| 18 |
+
logging.basicConfig(level=logging.INFO)
|
| 19 |
+
logger = logging.getLogger(__name__)
|
| 20 |
+
|
| 21 |
+
class SearchType(Enum):
|
| 22 |
+
"""Types of searches supported by Perplexity AI"""
|
| 23 |
+
GENERAL = "general"
|
| 24 |
+
ACADEMIC = "academic"
|
| 25 |
+
NEWS = "news"
|
| 26 |
+
SOCIAL = "social"
|
| 27 |
+
TECHNICAL = "technical"
|
| 28 |
+
|
| 29 |
+
@dataclass
|
| 30 |
+
class SourceResult:
|
| 31 |
+
"""Structure for individual source results"""
|
| 32 |
+
url: str
|
| 33 |
+
title: str
|
| 34 |
+
description: str
|
| 35 |
+
relevance_score: float
|
| 36 |
+
source_type: str
|
| 37 |
+
domain: str
|
| 38 |
+
publication_date: Optional[str] = None
|
| 39 |
+
author: Optional[str] = None
|
| 40 |
+
|
| 41 |
+
@dataclass
|
| 42 |
+
class SearchResults:
|
| 43 |
+
"""Container for search results"""
|
| 44 |
+
query: str
|
| 45 |
+
sources: List[SourceResult]
|
| 46 |
+
total_found: int
|
| 47 |
+
search_time: float
|
| 48 |
+
perplexity_response: str
|
| 49 |
+
suggestions: List[str]
|
| 50 |
+
|
| 51 |
+
class PerplexityClient:
|
| 52 |
+
"""
|
| 53 |
+
π§ Perplexity AI Client for Smart Source Discovery
|
| 54 |
+
|
| 55 |
+
Features:
|
| 56 |
+
- Intelligent source discovery based on project descriptions
|
| 57 |
+
- Multiple search strategies (academic, news, technical, etc.)
|
| 58 |
+
- Quality filtering and relevance scoring
|
| 59 |
+
- Rate limiting and error handling
|
| 60 |
+
- Domain validation and safety checks
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
def __init__(self, api_key: Optional[str] = None):
|
| 64 |
+
"""
|
| 65 |
+
Initialize Perplexity AI client
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
api_key: Perplexity API key (if not provided, will try env var)
|
| 69 |
+
"""
|
| 70 |
+
self.api_key = api_key or os.getenv('PERPLEXITY_API_KEY')
|
| 71 |
+
self.base_url = "https://api.perplexity.ai"
|
| 72 |
+
self.session = requests.Session()
|
| 73 |
+
|
| 74 |
+
# Set up headers
|
| 75 |
+
if self.api_key:
|
| 76 |
+
self.session.headers.update({
|
| 77 |
+
'Authorization': f'Bearer {self.api_key}',
|
| 78 |
+
'Content-Type': 'application/json',
|
| 79 |
+
'User-Agent': 'AI-Dataset-Studio/1.0'
|
| 80 |
+
})
|
| 81 |
+
|
| 82 |
+
# Rate limiting
|
| 83 |
+
self.last_request_time = 0
|
| 84 |
+
self.min_request_interval = 1.0 # Seconds between requests
|
| 85 |
+
|
| 86 |
+
# Configuration
|
| 87 |
+
self.max_retries = 3
|
| 88 |
+
self.timeout = 30
|
| 89 |
+
|
| 90 |
+
logger.info("π§ Perplexity AI client initialized")
|
| 91 |
+
|
| 92 |
+
def _validate_api_key(self) -> bool:
|
| 93 |
+
"""Validate that API key is available and working"""
|
| 94 |
+
if not self.api_key:
|
| 95 |
+
logger.error("β No Perplexity API key found. Set PERPLEXITY_API_KEY environment variable.")
|
| 96 |
+
return False
|
| 97 |
+
return True
|
| 98 |
+
|
| 99 |
+
def _rate_limit(self):
|
| 100 |
+
"""Implement rate limiting to respect API limits"""
|
| 101 |
+
current_time = time.time()
|
| 102 |
+
time_since_last = current_time - self.last_request_time
|
| 103 |
+
|
| 104 |
+
if time_since_last < self.min_request_interval:
|
| 105 |
+
sleep_time = self.min_request_interval - time_since_last
|
| 106 |
+
logger.debug(f"β±οΈ Rate limiting: sleeping {sleep_time:.2f}s")
|
| 107 |
+
time.sleep(sleep_time)
|
| 108 |
+
|
| 109 |
+
self.last_request_time = time.time()
|
| 110 |
+
|
| 111 |
+
def _make_request(self, payload: Dict) -> Optional[Dict]:
|
| 112 |
+
"""
|
| 113 |
+
Make API request to Perplexity with error handling
|
| 114 |
+
|
| 115 |
+
Args:
|
| 116 |
+
payload: Request payload
|
| 117 |
+
|
| 118 |
+
Returns:
|
| 119 |
+
API response or None if failed
|
| 120 |
+
"""
|
| 121 |
+
if not self._validate_api_key():
|
| 122 |
+
return None
|
| 123 |
+
|
| 124 |
+
self._rate_limit()
|
| 125 |
+
|
| 126 |
+
for attempt in range(self.max_retries):
|
| 127 |
+
try:
|
| 128 |
+
logger.debug(f"π‘ Making Perplexity API request (attempt {attempt + 1})")
|
| 129 |
+
|
| 130 |
+
response = self.session.post(
|
| 131 |
+
f"{self.base_url}/chat/completions",
|
| 132 |
+
json=payload,
|
| 133 |
+
timeout=self.timeout
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
if response.status_code == 200:
|
| 137 |
+
logger.debug("β
Perplexity API request successful")
|
| 138 |
+
return response.json()
|
| 139 |
+
elif response.status_code == 429:
|
| 140 |
+
logger.warning("π¦ Rate limit hit, waiting longer...")
|
| 141 |
+
time.sleep(2 ** attempt) # Exponential backoff
|
| 142 |
+
continue
|
| 143 |
+
else:
|
| 144 |
+
logger.error(f"β API request failed: {response.status_code} - {response.text}")
|
| 145 |
+
|
| 146 |
+
except requests.exceptions.Timeout:
|
| 147 |
+
logger.warning(f"β° Request timeout (attempt {attempt + 1})")
|
| 148 |
+
except requests.exceptions.RequestException as e:
|
| 149 |
+
logger.error(f"π Request error: {str(e)}")
|
| 150 |
+
|
| 151 |
+
if attempt < self.max_retries - 1:
|
| 152 |
+
time.sleep(2 ** attempt) # Exponential backoff
|
| 153 |
+
|
| 154 |
+
logger.error("β All retry attempts failed")
|
| 155 |
+
return None
|
| 156 |
+
|
| 157 |
+
def discover_sources(
|
| 158 |
+
self,
|
| 159 |
+
project_description: str,
|
| 160 |
+
search_type: SearchType = SearchType.GENERAL,
|
| 161 |
+
max_sources: int = 20,
|
| 162 |
+
include_academic: bool = True,
|
| 163 |
+
include_news: bool = True,
|
| 164 |
+
domain_filter: Optional[List[str]] = None
|
| 165 |
+
) -> SearchResults:
|
| 166 |
+
"""
|
| 167 |
+
π Discover relevant sources based on project description
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
project_description: User's project description
|
| 171 |
+
search_type: Type of search to perform
|
| 172 |
+
max_sources: Maximum number of sources to return
|
| 173 |
+
include_academic: Include academic sources
|
| 174 |
+
include_news: Include news sources
|
| 175 |
+
domain_filter: Optional list of domains to focus on
|
| 176 |
+
|
| 177 |
+
Returns:
|
| 178 |
+
SearchResults object with discovered sources
|
| 179 |
+
"""
|
| 180 |
+
start_time = time.time()
|
| 181 |
+
|
| 182 |
+
logger.info(f"π Discovering sources for: {project_description[:100]}...")
|
| 183 |
+
|
| 184 |
+
# Build search prompt
|
| 185 |
+
search_prompt = self._build_search_prompt(
|
| 186 |
+
project_description,
|
| 187 |
+
search_type,
|
| 188 |
+
max_sources,
|
| 189 |
+
include_academic,
|
| 190 |
+
include_news,
|
| 191 |
+
domain_filter
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
# Prepare API payload
|
| 195 |
+
payload = {
|
| 196 |
+
"model": "llama-3.1-sonar-large-128k-online",
|
| 197 |
+
"messages": [
|
| 198 |
+
{
|
| 199 |
+
"role": "system",
|
| 200 |
+
"content": "You are an expert research assistant specializing in finding high-quality, relevant sources for AI/ML dataset creation. Always provide specific URLs, titles, and descriptions."
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"role": "user",
|
| 204 |
+
"content": search_prompt
|
| 205 |
+
}
|
| 206 |
+
],
|
| 207 |
+
"max_tokens": 4000,
|
| 208 |
+
"temperature": 0.3,
|
| 209 |
+
"top_p": 0.9
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
# Make API request
|
| 213 |
+
response = self._make_request(payload)
|
| 214 |
+
|
| 215 |
+
if not response:
|
| 216 |
+
logger.error("β Failed to get response from Perplexity API")
|
| 217 |
+
return self._create_empty_results(project_description, time.time() - start_time)
|
| 218 |
+
|
| 219 |
+
# Parse response and extract sources
|
| 220 |
+
try:
|
| 221 |
+
content = response['choices'][0]['message']['content']
|
| 222 |
+
sources = self._parse_sources_from_response(content)
|
| 223 |
+
suggestions = self._extract_suggestions(content)
|
| 224 |
+
|
| 225 |
+
search_time = time.time() - start_time
|
| 226 |
+
|
| 227 |
+
logger.info(f"β
Found {len(sources)} sources in {search_time:.2f}s")
|
| 228 |
+
|
| 229 |
+
return SearchResults(
|
| 230 |
+
query=project_description,
|
| 231 |
+
sources=sources[:max_sources],
|
| 232 |
+
total_found=len(sources),
|
| 233 |
+
search_time=search_time,
|
| 234 |
+
perplexity_response=content,
|
| 235 |
+
suggestions=suggestions
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
except Exception as e:
|
| 239 |
+
logger.error(f"β Error parsing Perplexity response: {str(e)}")
|
| 240 |
+
return self._create_empty_results(project_description, time.time() - start_time)
|
| 241 |
+
|
| 242 |
+
def _build_search_prompt(
|
| 243 |
+
self,
|
| 244 |
+
project_description: str,
|
| 245 |
+
search_type: SearchType,
|
| 246 |
+
max_sources: int,
|
| 247 |
+
include_academic: bool,
|
| 248 |
+
include_news: bool,
|
| 249 |
+
domain_filter: Optional[List[str]]
|
| 250 |
+
) -> str:
|
| 251 |
+
"""Build optimized search prompt for Perplexity AI"""
|
| 252 |
+
|
| 253 |
+
prompt = f"""
|
| 254 |
+
Find {max_sources} high-quality, diverse sources for an AI/ML dataset creation project:
|
| 255 |
+
|
| 256 |
+
PROJECT DESCRIPTION: {project_description}
|
| 257 |
+
|
| 258 |
+
SEARCH REQUIREMENTS:
|
| 259 |
+
- Find sources with extractable text content suitable for ML training
|
| 260 |
+
- Prioritize sources with structured, high-quality content
|
| 261 |
+
- Include diverse perspectives and data types
|
| 262 |
+
- Focus on sources that are legally scrapable (respect robots.txt)
|
| 263 |
+
|
| 264 |
+
SEARCH TYPE: {search_type.value}
|
| 265 |
+
"""
|
| 266 |
+
|
| 267 |
+
if include_academic:
|
| 268 |
+
prompt += "\n- Include academic papers, research articles, and scholarly sources"
|
| 269 |
+
|
| 270 |
+
if include_news:
|
| 271 |
+
prompt += "\n- Include news articles, press releases, and journalistic content"
|
| 272 |
+
|
| 273 |
+
if domain_filter:
|
| 274 |
+
prompt += f"\n- Focus on these domains: {', '.join(domain_filter)}"
|
| 275 |
+
|
| 276 |
+
prompt += f"""
|
| 277 |
+
|
| 278 |
+
OUTPUT FORMAT:
|
| 279 |
+
For each source, provide:
|
| 280 |
+
1. **URL**: Direct link to the content
|
| 281 |
+
2. **Title**: Clear, descriptive title
|
| 282 |
+
3. **Description**: 2-3 sentence summary of content and why it's relevant
|
| 283 |
+
4. **Type**: [academic/news/blog/government/technical/forum/social]
|
| 284 |
+
5. **Quality Score**: 1-10 rating for dataset suitability
|
| 285 |
+
|
| 286 |
+
ADDITIONAL REQUIREMENTS:
|
| 287 |
+
- Verify URLs are accessible and contain substantial text
|
| 288 |
+
- Avoid paywalled or login-required content when possible
|
| 289 |
+
- Prioritize sources with consistent formatting
|
| 290 |
+
- Include publication dates when available
|
| 291 |
+
- Suggest related search terms for expanding the dataset
|
| 292 |
+
|
| 293 |
+
Please provide concrete, actionable sources that can be immediately scraped for dataset creation.
|
| 294 |
+
"""
|
| 295 |
+
|
| 296 |
+
return prompt
|
| 297 |
+
|
| 298 |
+
def _parse_sources_from_response(self, content: str) -> List[SourceResult]:
|
| 299 |
+
"""Parse source information from Perplexity AI response"""
|
| 300 |
+
sources = []
|
| 301 |
+
|
| 302 |
+
# Try to extract structured information
|
| 303 |
+
# Look for URL patterns
|
| 304 |
+
url_pattern = r'https?://[^\s<>"{}|\\^`\[\]]+[^\s<>"{}|\\^`\[\].,!?;:]'
|
| 305 |
+
|
| 306 |
+
# Split content into sections
|
| 307 |
+
sections = re.split(r'\n\s*\n', content)
|
| 308 |
+
|
| 309 |
+
for section in sections:
|
| 310 |
+
# Look for URLs in this section
|
| 311 |
+
urls = re.findall(url_pattern, section, re.IGNORECASE)
|
| 312 |
+
|
| 313 |
+
if urls:
|
| 314 |
+
for url in urls:
|
| 315 |
+
try:
|
| 316 |
+
# Clean URL
|
| 317 |
+
url = url.strip()
|
| 318 |
+
|
| 319 |
+
# Extract title (look for text before the URL or after)
|
| 320 |
+
title = self._extract_title_from_section(section, url)
|
| 321 |
+
|
| 322 |
+
# Extract description
|
| 323 |
+
description = self._extract_description_from_section(section, url)
|
| 324 |
+
|
| 325 |
+
# Determine source type
|
| 326 |
+
source_type = self._determine_source_type(url, section)
|
| 327 |
+
|
| 328 |
+
# Calculate relevance score (basic heuristic)
|
| 329 |
+
relevance_score = self._calculate_relevance_score(section, url)
|
| 330 |
+
|
| 331 |
+
# Get domain
|
| 332 |
+
domain = self._extract_domain(url)
|
| 333 |
+
|
| 334 |
+
# Validate URL
|
| 335 |
+
if self._is_valid_url(url):
|
| 336 |
+
source = SourceResult(
|
| 337 |
+
url=url,
|
| 338 |
+
title=title,
|
| 339 |
+
description=description,
|
| 340 |
+
relevance_score=relevance_score,
|
| 341 |
+
source_type=source_type,
|
| 342 |
+
domain=domain
|
| 343 |
+
)
|
| 344 |
+
sources.append(source)
|
| 345 |
+
|
| 346 |
+
except Exception as e:
|
| 347 |
+
logger.debug(f"β οΈ Error parsing source: {str(e)}")
|
| 348 |
+
continue
|
| 349 |
+
|
| 350 |
+
# Remove duplicates based on URL
|
| 351 |
+
seen_urls = set()
|
| 352 |
+
unique_sources = []
|
| 353 |
+
|
| 354 |
+
for source in sources:
|
| 355 |
+
if source.url not in seen_urls:
|
| 356 |
+
seen_urls.add(source.url)
|
| 357 |
+
unique_sources.append(source)
|
| 358 |
+
|
| 359 |
+
# Sort by relevance score
|
| 360 |
+
unique_sources.sort(key=lambda x: x.relevance_score, reverse=True)
|
| 361 |
+
|
| 362 |
+
return unique_sources
|
| 363 |
+
|
| 364 |
+
def _extract_title_from_section(self, section: str, url: str) -> str:
|
| 365 |
+
"""Extract title from section text"""
|
| 366 |
+
lines = section.split('\n')
|
| 367 |
+
|
| 368 |
+
for line in lines:
|
| 369 |
+
if url in line:
|
| 370 |
+
# Look for title patterns
|
| 371 |
+
title_patterns = [
|
| 372 |
+
r'\*\*([^*]+)\*\*', # **Title**
|
| 373 |
+
r'#{1,6}\s*([^\n]+)', # # Title
|
| 374 |
+
r'Title:\s*([^\n]+)', # Title: Something
|
| 375 |
+
r'([^:\n]+):?\s*' + re.escape(url), # Title: URL
|
| 376 |
+
]
|
| 377 |
+
|
| 378 |
+
for pattern in title_patterns:
|
| 379 |
+
match = re.search(pattern, line, re.IGNORECASE)
|
| 380 |
+
if match:
|
| 381 |
+
return match.group(1).strip()
|
| 382 |
+
|
| 383 |
+
# Fallback: use domain name
|
| 384 |
+
return self._extract_domain(url)
|
| 385 |
+
|
| 386 |
+
def _extract_description_from_section(self, section: str, url: str) -> str:
|
| 387 |
+
"""Extract description from section text"""
|
| 388 |
+
# Remove the URL line and look for descriptive text
|
| 389 |
+
lines = section.split('\n')
|
| 390 |
+
description_lines = []
|
| 391 |
+
|
| 392 |
+
for line in lines:
|
| 393 |
+
if url not in line and line.strip():
|
| 394 |
+
# Skip markdown headers and bullets
|
| 395 |
+
clean_line = re.sub(r'^[#*\-\d\.]+\s*', '', line.strip())
|
| 396 |
+
if len(clean_line) > 20: # Meaningful content
|
| 397 |
+
description_lines.append(clean_line)
|
| 398 |
+
|
| 399 |
+
description = ' '.join(description_lines)
|
| 400 |
+
|
| 401 |
+
# Truncate if too long
|
| 402 |
+
if len(description) > 200:
|
| 403 |
+
description = description[:200] + "..."
|
| 404 |
+
|
| 405 |
+
return description or "High-quality source for dataset creation"
|
| 406 |
+
|
| 407 |
+
def _determine_source_type(self, url: str, section: str) -> str:
|
| 408 |
+
"""Determine the type of source based on URL and context"""
|
| 409 |
+
url_lower = url.lower()
|
| 410 |
+
section_lower = section.lower()
|
| 411 |
+
|
| 412 |
+
# Academic sources
|
| 413 |
+
if any(domain in url_lower for domain in [
|
| 414 |
+
'arxiv.org', 'scholar.google', 'pubmed', 'ieee.org',
|
| 415 |
+
'acm.org', 'springer.com', 'elsevier.com', 'nature.com',
|
| 416 |
+
'sciencedirect.com', 'jstor.org'
|
| 417 |
+
]):
|
| 418 |
+
return 'academic'
|
| 419 |
+
|
| 420 |
+
# News sources
|
| 421 |
+
if any(domain in url_lower for domain in [
|
| 422 |
+
'cnn.com', 'bbc.com', 'reuters.com', 'ap.org', 'nytimes.com',
|
| 423 |
+
'washingtonpost.com', 'theguardian.com', 'bloomberg.com',
|
| 424 |
+
'techcrunch.com', 'wired.com'
|
| 425 |
+
]):
|
| 426 |
+
return 'news'
|
| 427 |
+
|
| 428 |
+
# Government sources
|
| 429 |
+
if '.gov' in url_lower or 'government' in section_lower:
|
| 430 |
+
return 'government'
|
| 431 |
+
|
| 432 |
+
# Technical/Documentation
|
| 433 |
+
if any(domain in url_lower for domain in [
|
| 434 |
+
'docs.', 'documentation', 'github.com', 'stackoverflow.com',
|
| 435 |
+
'medium.com', 'dev.to'
|
| 436 |
+
]):
|
| 437 |
+
return 'technical'
|
| 438 |
+
|
| 439 |
+
# Social media
|
| 440 |
+
if any(domain in url_lower for domain in [
|
| 441 |
+
'twitter.com', 'reddit.com', 'linkedin.com', 'facebook.com'
|
| 442 |
+
]):
|
| 443 |
+
return 'social'
|
| 444 |
+
|
| 445 |
+
# Default to blog
|
| 446 |
+
return 'blog'
|
| 447 |
+
|
| 448 |
+
def _calculate_relevance_score(self, section: str, url: str) -> float:
|
| 449 |
+
"""Calculate relevance score for a source (0-10)"""
|
| 450 |
+
score = 5.0 # Base score
|
| 451 |
+
|
| 452 |
+
section_lower = section.lower()
|
| 453 |
+
url_lower = url.lower()
|
| 454 |
+
|
| 455 |
+
# Boost for quality indicators
|
| 456 |
+
quality_indicators = [
|
| 457 |
+
'research', 'study', 'analysis', 'comprehensive', 'detailed',
|
| 458 |
+
'expert', 'professional', 'authoritative', 'peer-reviewed',
|
| 459 |
+
'dataset', 'data', 'machine learning', 'ai', 'artificial intelligence'
|
| 460 |
+
]
|
| 461 |
+
|
| 462 |
+
for indicator in quality_indicators:
|
| 463 |
+
if indicator in section_lower:
|
| 464 |
+
score += 0.5
|
| 465 |
+
|
| 466 |
+
# Boost for academic sources
|
| 467 |
+
if any(domain in url_lower for domain in ['arxiv.org', 'scholar.google', 'pubmed']):
|
| 468 |
+
score += 2.0
|
| 469 |
+
|
| 470 |
+
# Boost for government sources
|
| 471 |
+
if '.gov' in url_lower:
|
| 472 |
+
score += 1.5
|
| 473 |
+
|
| 474 |
+
# Penalize for social media
|
| 475 |
+
if any(domain in url_lower for domain in ['twitter.com', 'facebook.com']):
|
| 476 |
+
score -= 1.0
|
| 477 |
+
|
| 478 |
+
# Cap at 10
|
| 479 |
+
return min(score, 10.0)
|
| 480 |
+
|
| 481 |
+
def _extract_domain(self, url: str) -> str:
|
| 482 |
+
"""Extract domain from URL"""
|
| 483 |
+
try:
|
| 484 |
+
parsed = urlparse(url)
|
| 485 |
+
return parsed.netloc
|
| 486 |
+
except:
|
| 487 |
+
return "unknown"
|
| 488 |
+
|
| 489 |
+
def _is_valid_url(self, url: str) -> bool:
|
| 490 |
+
"""Validate URL format and basic accessibility"""
|
| 491 |
+
try:
|
| 492 |
+
parsed = urlparse(url)
|
| 493 |
+
return all([parsed.scheme, parsed.netloc])
|
| 494 |
+
except:
|
| 495 |
+
return False
|
| 496 |
+
|
| 497 |
+
def _extract_suggestions(self, content: str) -> List[str]:
|
| 498 |
+
"""Extract search suggestions from Perplexity response"""
|
| 499 |
+
suggestions = []
|
| 500 |
+
|
| 501 |
+
# Look for suggestion patterns
|
| 502 |
+
suggestion_patterns = [
|
| 503 |
+
r'related search terms?:?\s*([^\n]+)',
|
| 504 |
+
r'you might also search for:?\s*([^\n]+)',
|
| 505 |
+
r'additional keywords?:?\s*([^\n]+)',
|
| 506 |
+
r'suggestions?:?\s*([^\n]+)'
|
| 507 |
+
]
|
| 508 |
+
|
| 509 |
+
for pattern in suggestion_patterns:
|
| 510 |
+
matches = re.findall(pattern, content, re.IGNORECASE)
|
| 511 |
+
for match in matches:
|
| 512 |
+
# Split by common delimiters
|
| 513 |
+
terms = re.split(r'[,;|]', match)
|
| 514 |
+
suggestions.extend([term.strip().strip('"\'') for term in terms if term.strip()])
|
| 515 |
+
|
| 516 |
+
return suggestions[:10] # Limit to 10 suggestions
|
| 517 |
+
|
| 518 |
+
def _create_empty_results(self, query: str, search_time: float) -> SearchResults:
|
| 519 |
+
"""Create empty results object for failed searches"""
|
| 520 |
+
return SearchResults(
|
| 521 |
+
query=query,
|
| 522 |
+
sources=[],
|
| 523 |
+
total_found=0,
|
| 524 |
+
search_time=search_time,
|
| 525 |
+
perplexity_response="",
|
| 526 |
+
suggestions=[]
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
def search_with_keywords(self, keywords: List[str], search_type: SearchType = SearchType.GENERAL) -> SearchResults:
|
| 530 |
+
"""
|
| 531 |
+
π Search using specific keywords
|
| 532 |
+
|
| 533 |
+
Args:
|
| 534 |
+
keywords: List of search keywords
|
| 535 |
+
search_type: Type of search to perform
|
| 536 |
+
|
| 537 |
+
Returns:
|
| 538 |
+
SearchResults object
|
| 539 |
+
"""
|
| 540 |
+
query = " ".join(keywords)
|
| 541 |
+
return self.discover_sources(
|
| 542 |
+
project_description=f"Find sources related to: {query}",
|
| 543 |
+
search_type=search_type
|
| 544 |
+
)
|
| 545 |
+
|
| 546 |
+
def get_domain_sources(self, domain: str, topic: str, max_sources: int = 10) -> SearchResults:
|
| 547 |
+
"""
|
| 548 |
+
π Find sources from a specific domain
|
| 549 |
+
|
| 550 |
+
Args:
|
| 551 |
+
domain: Target domain (e.g., "nature.com")
|
| 552 |
+
topic: Topic to search for
|
| 553 |
+
max_sources: Maximum sources to return
|
| 554 |
+
|
| 555 |
+
Returns:
|
| 556 |
+
SearchResults object
|
| 557 |
+
"""
|
| 558 |
+
return self.discover_sources(
|
| 559 |
+
project_description=f"Find articles about {topic} from {domain}",
|
| 560 |
+
domain_filter=[domain],
|
| 561 |
+
max_sources=max_sources
|
| 562 |
+
)
|
| 563 |
+
|
| 564 |
+
def validate_sources(self, sources: List[SourceResult]) -> List[SourceResult]:
|
| 565 |
+
"""
|
| 566 |
+
β
Validate and filter sources for quality and accessibility
|
| 567 |
+
|
| 568 |
+
Args:
|
| 569 |
+
sources: List of source results to validate
|
| 570 |
+
|
| 571 |
+
Returns:
|
| 572 |
+
Filtered list of valid sources
|
| 573 |
+
"""
|
| 574 |
+
valid_sources = []
|
| 575 |
+
|
| 576 |
+
for source in sources:
|
| 577 |
+
try:
|
| 578 |
+
# Basic URL validation
|
| 579 |
+
if not self._is_valid_url(source.url):
|
| 580 |
+
logger.debug(f"β οΈ Invalid URL: {source.url}")
|
| 581 |
+
continue
|
| 582 |
+
|
| 583 |
+
# Check if domain is accessible (basic check)
|
| 584 |
+
domain = self._extract_domain(source.url)
|
| 585 |
+
if not domain or domain == "unknown":
|
| 586 |
+
logger.debug(f"β οΈ Unknown domain: {source.url}")
|
| 587 |
+
continue
|
| 588 |
+
|
| 589 |
+
# Quality score threshold
|
| 590 |
+
if source.relevance_score < 3.0:
|
| 591 |
+
logger.debug(f"β οΈ Low quality score: {source.url}")
|
| 592 |
+
continue
|
| 593 |
+
|
| 594 |
+
valid_sources.append(source)
|
| 595 |
+
|
| 596 |
+
except Exception as e:
|
| 597 |
+
logger.debug(f"β οΈ Error validating source {source.url}: {str(e)}")
|
| 598 |
+
continue
|
| 599 |
+
|
| 600 |
+
logger.info(f"β
Validated {len(valid_sources)} out of {len(sources)} sources")
|
| 601 |
+
return valid_sources
|
| 602 |
+
|
| 603 |
+
def export_sources(self, results: SearchResults, format: str = "json") -> str:
|
| 604 |
+
"""
|
| 605 |
+
π Export search results to various formats
|
| 606 |
+
|
| 607 |
+
Args:
|
| 608 |
+
results: SearchResults object to export
|
| 609 |
+
format: Export format ("json", "csv", "markdown")
|
| 610 |
+
|
| 611 |
+
Returns:
|
| 612 |
+
Exported data as string
|
| 613 |
+
"""
|
| 614 |
+
if format.lower() == "json":
|
| 615 |
+
return self._export_json(results)
|
| 616 |
+
elif format.lower() == "csv":
|
| 617 |
+
return self._export_csv(results)
|
| 618 |
+
elif format.lower() == "markdown":
|
| 619 |
+
return self._export_markdown(results)
|
| 620 |
+
else:
|
| 621 |
+
raise ValueError(f"Unsupported export format: {format}")
|
| 622 |
+
|
| 623 |
+
def _export_json(self, results: SearchResults) -> str:
|
| 624 |
+
"""Export results as JSON"""
|
| 625 |
+
data = {
|
| 626 |
+
"query": results.query,
|
| 627 |
+
"total_found": results.total_found,
|
| 628 |
+
"search_time": results.search_time,
|
| 629 |
+
"sources": [
|
| 630 |
+
{
|
| 631 |
+
"url": source.url,
|
| 632 |
+
"title": source.title,
|
| 633 |
+
"description": source.description,
|
| 634 |
+
"relevance_score": source.relevance_score,
|
| 635 |
+
"source_type": source.source_type,
|
| 636 |
+
"domain": source.domain,
|
| 637 |
+
"publication_date": source.publication_date,
|
| 638 |
+
"author": source.author
|
| 639 |
+
}
|
| 640 |
+
for source in results.sources
|
| 641 |
+
],
|
| 642 |
+
"suggestions": results.suggestions
|
| 643 |
+
}
|
| 644 |
+
return json.dumps(data, indent=2)
|
| 645 |
+
|
| 646 |
+
def _export_csv(self, results: SearchResults) -> str:
|
| 647 |
+
"""Export results as CSV"""
|
| 648 |
+
import csv
|
| 649 |
+
from io import StringIO
|
| 650 |
+
|
| 651 |
+
output = StringIO()
|
| 652 |
+
writer = csv.writer(output)
|
| 653 |
+
|
| 654 |
+
# Write header
|
| 655 |
+
writer.writerow([
|
| 656 |
+
"URL", "Title", "Description", "Relevance Score",
|
| 657 |
+
"Source Type", "Domain", "Publication Date", "Author"
|
| 658 |
+
])
|
| 659 |
+
|
| 660 |
+
# Write data
|
| 661 |
+
for source in results.sources:
|
| 662 |
+
writer.writerow([
|
| 663 |
+
source.url,
|
| 664 |
+
source.title,
|
| 665 |
+
source.description,
|
| 666 |
+
source.relevance_score,
|
| 667 |
+
source.source_type,
|
| 668 |
+
source.domain,
|
| 669 |
+
source.publication_date or "",
|
| 670 |
+
source.author or ""
|
| 671 |
+
])
|
| 672 |
+
|
| 673 |
+
return output.getvalue()
|
| 674 |
+
|
| 675 |
+
def _export_markdown(self, results: SearchResults) -> str:
|
| 676 |
+
"""Export results as Markdown"""
|
| 677 |
+
md = f"# Search Results for: {results.query}\n\n"
|
| 678 |
+
md += f"**Total Sources Found:** {results.total_found}\n"
|
| 679 |
+
md += f"**Search Time:** {results.search_time:.2f} seconds\n\n"
|
| 680 |
+
|
| 681 |
+
md += "## Sources\n\n"
|
| 682 |
+
|
| 683 |
+
for i, source in enumerate(results.sources, 1):
|
| 684 |
+
md += f"### {i}. {source.title}\n\n"
|
| 685 |
+
md += f"**URL:** {source.url}\n"
|
| 686 |
+
md += f"**Type:** {source.source_type}\n"
|
| 687 |
+
md += f"**Domain:** {source.domain}\n"
|
| 688 |
+
md += f"**Relevance Score:** {source.relevance_score}/10\n"
|
| 689 |
+
md += f"**Description:** {source.description}\n\n"
|
| 690 |
+
|
| 691 |
+
if results.suggestions:
|
| 692 |
+
md += "## Related Search Suggestions\n\n"
|
| 693 |
+
for suggestion in results.suggestions:
|
| 694 |
+
md += f"- {suggestion}\n"
|
| 695 |
+
|
| 696 |
+
return md
|
| 697 |
+
|
| 698 |
+
# Example usage and testing functions
|
| 699 |
+
def test_perplexity_client():
|
| 700 |
+
"""Test function for Perplexity client"""
|
| 701 |
+
client = PerplexityClient()
|
| 702 |
+
|
| 703 |
+
if not client._validate_api_key():
|
| 704 |
+
print("β No API key found. Set PERPLEXITY_API_KEY environment variable.")
|
| 705 |
+
return
|
| 706 |
+
|
| 707 |
+
# Test search
|
| 708 |
+
results = client.discover_sources(
|
| 709 |
+
project_description="Create a dataset for sentiment analysis of product reviews",
|
| 710 |
+
search_type=SearchType.GENERAL,
|
| 711 |
+
max_sources=10
|
| 712 |
+
)
|
| 713 |
+
|
| 714 |
+
print(f"π Found {len(results.sources)} sources")
|
| 715 |
+
for source in results.sources[:3]:
|
| 716 |
+
print(f" - {source.title}: {source.url}")
|
| 717 |
+
|
| 718 |
+
# Test export
|
| 719 |
+
json_export = client.export_sources(results, "json")
|
| 720 |
+
print(f"π JSON export: {len(json_export)} characters")
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
# Test the client
|
| 724 |
+
test_perplexity_client()
|