Spaces:
Runtime error
Runtime error
| from onnx_modules.V230_OnnxInference import OnnxInferenceSession | |
| import numpy as np | |
| import torch | |
| from scipy.io.wavfile import write | |
| from text import cleaned_text_to_sequence, get_bert | |
| from text.cleaner import clean_text | |
| import utils | |
| import commons | |
| import uuid | |
| from flask import Flask, request, jsonify, render_template_string | |
| from flask_cors import CORS | |
| import gradio as gr | |
| import os | |
| from threading import Thread | |
| hps = utils.get_hparams_from_file('onnx/BangDreamApi.json') | |
| device = 'cpu' | |
| BandList = { | |
| "PoppinParty":["香澄","有咲","たえ","りみ","沙綾"], | |
| "Afterglow":["蘭","モカ","ひまり","巴","つぐみ"], | |
| "HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"], | |
| "PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"], | |
| "Roselia":["友希那","紗夜","リサ","燐子","あこ"], | |
| "RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"], | |
| "Morfonica":["ましろ","瑠唯","つくし","七深","透子"], | |
| "MyGo":["燈","愛音","そよ","立希","楽奈"], | |
| "AveMujica":["祥子","睦","海鈴","にゃむ","初華"], | |
| "圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"], | |
| "凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"], | |
| "弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"], | |
| "西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"] | |
| } | |
| Session = OnnxInferenceSession( | |
| { | |
| "enc" : "onnx/BangDreamApi/BangDreamApi_enc_p.onnx", | |
| "emb_g" : "onnx/BangDreamApi/BangDreamApi_emb.onnx", | |
| "dp" : "onnx/BangDreamApi/BangDreamApi_dp.onnx", | |
| "sdp" : "onnx/BangDreamApi/BangDreamApi_sdp.onnx", | |
| "flow" : "onnx/BangDreamApi/BangDreamApi_flow.onnx", | |
| "dec" : "onnx/BangDreamApi/BangDreamApi_dec.onnx" | |
| }, | |
| Providers = ["CPUExecutionProvider"] | |
| ) | |
| def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7): | |
| style_text = None if style_text == "" else style_text | |
| norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
| phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
| if True: | |
| phone = commons.intersperse(phone, 0) | |
| tone = commons.intersperse(tone, 0) | |
| language = commons.intersperse(language, 0) | |
| for i in range(len(word2ph)): | |
| word2ph[i] = word2ph[i] * 2 | |
| word2ph[0] += 1 | |
| bert_ori = get_bert( | |
| norm_text, word2ph, language_str, device, style_text, style_weight | |
| ) | |
| del word2ph | |
| assert bert_ori.shape[-1] == len(phone), phone | |
| if language_str == "ZH": | |
| bert = bert_ori | |
| ja_bert = torch.randn(1024, len(phone)) | |
| en_bert = torch.randn(1024, len(phone)) | |
| elif language_str == "JP": | |
| bert = torch.randn(1024, len(phone)) | |
| ja_bert = bert_ori | |
| en_bert = torch.randn(1024, len(phone)) | |
| elif language_str == "EN": | |
| bert = torch.randn(1024, len(phone)) | |
| ja_bert = torch.randn(1024, len(phone)) | |
| en_bert = bert_ori | |
| else: | |
| raise ValueError("language_str should be ZH, JP or EN") | |
| assert bert.shape[-1] == len( | |
| phone | |
| ), f"Bert seq len {bert.shape[-1]} != {len(phone)}" | |
| phone = torch.LongTensor(phone) | |
| tone = torch.LongTensor(tone) | |
| language = torch.LongTensor(language) | |
| return bert, ja_bert, en_bert, phone, tone, language | |
| def infer( | |
| text, | |
| sid, | |
| style_text=None, | |
| style_weight=0.7, | |
| sdp_ratio=0.5, | |
| noise_scale=0.6, | |
| noise_scale_w=0.667, | |
| length_scale=1, | |
| unique_filename = 'temp.wav' | |
| ): | |
| language= 'JP' if is_japanese(text) else 'ZH' | |
| bert, ja_bert, en_bert, phones, tone, language = get_text( | |
| text, | |
| language, | |
| hps, | |
| device, | |
| style_text=style_text, | |
| style_weight=style_weight, | |
| ) | |
| with torch.no_grad(): | |
| x_tst = phones.unsqueeze(0).to(device).numpy() | |
| language = np.zeros_like(x_tst) | |
| tone = np.zeros_like(x_tst) | |
| bert = bert.to(device).transpose(0, 1).numpy() | |
| ja_bert = ja_bert.to(device).transpose(0, 1).numpy() | |
| en_bert = en_bert.to(device).transpose(0, 1).numpy() | |
| del phones | |
| sid = np.array([hps.spk2id[sid]]) | |
| audio = Session( | |
| x_tst, | |
| tone, | |
| language, | |
| bert, | |
| ja_bert, | |
| en_bert, | |
| sid, | |
| seed=114514, | |
| seq_noise_scale=noise_scale_w, | |
| sdp_noise_scale=noise_scale, | |
| length_scale=length_scale, | |
| sdp_ratio=sdp_ratio, | |
| ) | |
| del x_tst, tone, language, bert, ja_bert, en_bert, sid | |
| write(unique_filename, 44100, audio) | |
| return (44100,gr.processing_utils.convert_to_16_bit_wav(audio)) | |
| def is_japanese(string): | |
| for ch in string: | |
| if ord(ch) > 0x3040 and ord(ch) < 0x30FF: | |
| return True | |
| return False | |
| Flaskapp = Flask(__name__) | |
| CORS(Flaskapp) | |
| def tts(): | |
| global last_text, last_model | |
| speaker = request.args.get('speaker') | |
| sdp_ratio = float(request.args.get('sdp_ratio', 0.2)) | |
| noise_scale = float(request.args.get('noise_scale', 0.6)) | |
| noise_scale_w = float(request.args.get('noise_scale_w', 0.8)) | |
| length_scale = float(request.args.get('length_scale', 1)) | |
| style_weight = float(request.args.get('style_weight', 0.7)) | |
| style_text = request.args.get('style_text', 'happy') | |
| text = request.args.get('text') | |
| is_chat = request.args.get('is_chat', 'false').lower() == 'true' | |
| #model = request.args.get('model',modelPaths[-1]) | |
| if not speaker or not text: | |
| return render_template_string(""" | |
| <!DOCTYPE html> | |
| <html> | |
| <head> | |
| <title>TTS API Documentation</title> | |
| </head> | |
| <body> | |
| <iframe src="https://mahiruoshi-bangdream-bert-vits2.hf.space" style="width:100%; height:100vh; border:none;"></iframe> | |
| </body> | |
| </html> | |
| """) | |
| ''' | |
| if model != last_model: | |
| unique_filename = loadmodel(model) | |
| last_model = model | |
| ''' | |
| if is_chat and text == last_text: | |
| # Generate 1 second of silence and return | |
| unique_filename = 'blank.wav' | |
| silence = np.zeros(44100, dtype=np.int16) | |
| write(unique_filename , 44100, silence) | |
| else: | |
| last_text = text | |
| unique_filename = f"temp{uuid.uuid4()}.wav" | |
| infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale,sid = speaker, style_text=style_text, style_weight=style_weight,unique_filename=unique_filename) | |
| with open(unique_filename ,'rb') as bit: | |
| wav_bytes = bit.read() | |
| os.remove(unique_filename) | |
| headers = { | |
| 'Content-Type': 'audio/wav', | |
| 'Text': unique_filename .encode('utf-8')} | |
| return wav_bytes, 200, headers | |
| if __name__ == "__main__": | |
| speaker_ids = hps.spk2id | |
| speakers = list(speaker_ids.keys()) | |
| last_text = "" | |
| Flaskapp.run(host="0.0.0.0", port=5000,debug=True) |