Spaces:
Runtime error
Runtime error
Commit
·
1898ee1
1
Parent(s):
8d129e6
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import re
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from transformers import AutoTokenizer, AutoFeatureExtractor, VisionEncoderDecoderModel
|
| 6 |
+
|
| 7 |
+
def predict(image, max_length=30, num_beams=4):
|
| 8 |
+
image = image.convert('RGB')
|
| 9 |
+
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
| 10 |
+
pixel_values = pixel_values.to(device)
|
| 11 |
+
with torch.no_grad():
|
| 12 |
+
caption_ids = model.generate(pixel_values.cpu())[0]
|
| 13 |
+
caption_text = tokenizer.decode(caption_ids, skip_special_tokens=True)
|
| 14 |
+
return caption_text
|
| 15 |
+
|
| 16 |
+
model_path = "MahsaShahidi/Persian-Image-Captioning"
|
| 17 |
+
device = "cpu"
|
| 18 |
+
# Load model.
|
| 19 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_path)
|
| 20 |
+
model.to(device)
|
| 21 |
+
print("Loaded model")
|
| 22 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
|
| 23 |
+
print("Loaded feature_extractor")
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained('HooshvareLab/bert-fa-base-uncased-clf-persiannews')
|
| 25 |
+
print("Loaded tokenizer")
|
| 26 |
+
title = "Persian Image Captioning"
|
| 27 |
+
description = ""
|
| 28 |
+
|
| 29 |
+
input = gr.inputs.Image(label="Image to search", type = 'pil', optional=False)
|
| 30 |
+
output = gr.outputs.Textbox(type="auto",label="Captions")
|
| 31 |
+
|
| 32 |
+
article = "This HuggingFace Space presents a demo for Persian Image Camptioning on VIT as its Encoder and ParsBERT (v2.0) as its Decoder"
|
| 33 |
+
|
| 34 |
+
images = [f"./image-{i}.jpg" for i in range(1,4)]
|
| 35 |
+
|
| 36 |
+
interface = gr.Interface(
|
| 37 |
+
fn=predict,
|
| 38 |
+
inputs = input,
|
| 39 |
+
outputs=output,
|
| 40 |
+
examples = images,
|
| 41 |
+
title=title,
|
| 42 |
+
description=article,
|
| 43 |
+
)
|
| 44 |
+
interface.launch(share = True)
|