Spaces:
Running
on
Zero
Running
on
Zero
Update optimizer.py
Browse files- optimizer.py +132 -61
optimizer.py
CHANGED
|
@@ -30,9 +30,8 @@ class UltraSupremeOptimizer:
|
|
| 30 |
self.usage_count = 0
|
| 31 |
self.device = self._get_device()
|
| 32 |
self.is_initialized = False
|
| 33 |
-
#
|
| 34 |
-
|
| 35 |
-
|
| 36 |
@staticmethod
|
| 37 |
def _get_device() -> str:
|
| 38 |
"""Determine the best available device for computation"""
|
|
@@ -49,13 +48,13 @@ class UltraSupremeOptimizer:
|
|
| 49 |
return True
|
| 50 |
|
| 51 |
try:
|
| 52 |
-
# Configuración
|
| 53 |
config = Config(
|
| 54 |
clip_model_name="ViT-L-14/openai",
|
| 55 |
download_cache=True,
|
| 56 |
chunk_size=2048,
|
| 57 |
quiet=True,
|
| 58 |
-
device="cpu" #
|
| 59 |
)
|
| 60 |
|
| 61 |
self.interrogator = Interrogator(config)
|
|
@@ -63,7 +62,8 @@ class UltraSupremeOptimizer:
|
|
| 63 |
|
| 64 |
# Clean up memory after initialization
|
| 65 |
gc.collect()
|
| 66 |
-
|
|
|
|
| 67 |
return True
|
| 68 |
|
| 69 |
except Exception as e:
|
|
@@ -86,8 +86,8 @@ class UltraSupremeOptimizer:
|
|
| 86 |
if image.mode != 'RGB':
|
| 87 |
image = image.convert('RGB')
|
| 88 |
|
| 89 |
-
# Resize if too large
|
| 90 |
-
max_size =
|
| 91 |
if image.size[0] > max_size or image.size[1] > max_size:
|
| 92 |
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
| 93 |
|
|
@@ -109,7 +109,7 @@ class UltraSupremeOptimizer:
|
|
| 109 |
r',\s*artstation',
|
| 110 |
r',\s*concept art',
|
| 111 |
r',\s*digital art',
|
| 112 |
-
r',\s*by greg rutkowski',
|
| 113 |
]
|
| 114 |
|
| 115 |
cleaned_prompt = base_prompt
|
|
@@ -148,25 +148,101 @@ class UltraSupremeOptimizer:
|
|
| 148 |
|
| 149 |
return final_prompt
|
| 150 |
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
def run_clip_inference(self, image: Image.Image) -> Tuple[str, str, str]:
|
| 153 |
"""Solo la inferencia CLIP usa GPU"""
|
| 154 |
try:
|
| 155 |
-
#
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
-
#
|
| 161 |
-
|
| 162 |
-
self.interrogator.clip_model = self.interrogator.clip_model.to("cuda")
|
| 163 |
-
logger.info("CLIP model moved to GPU with native precision")
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
|
|
|
| 168 |
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
full_prompt = self.interrogator.interrogate(image)
|
| 171 |
clip_fast = self.interrogator.interrogate_fast(image)
|
| 172 |
clip_classic = self.interrogator.interrogate_classic(image)
|
|
@@ -174,26 +250,8 @@ class UltraSupremeOptimizer:
|
|
| 174 |
return full_prompt, clip_fast, clip_classic
|
| 175 |
|
| 176 |
except Exception as e:
|
| 177 |
-
logger.error(f"
|
| 178 |
-
|
| 179 |
-
if self.device == "cuda":
|
| 180 |
-
logger.info("Falling back to CPU inference")
|
| 181 |
-
self.interrogator.config.device = "cpu"
|
| 182 |
-
|
| 183 |
-
if hasattr(self.interrogator, 'clip_model') and self.interrogator.clip_model is not None:
|
| 184 |
-
self.interrogator.clip_model = self.interrogator.clip_model.to("cpu")
|
| 185 |
-
|
| 186 |
-
if hasattr(self.interrogator, 'blip_model') and self.interrogator.blip_model is not None:
|
| 187 |
-
self.interrogator.blip_model = self.interrogator.blip_model.to("cpu")
|
| 188 |
-
|
| 189 |
-
# Reintentar en CPU
|
| 190 |
-
full_prompt = self.interrogator.interrogate(image)
|
| 191 |
-
clip_fast = self.interrogator.interrogate_fast(image)
|
| 192 |
-
clip_classic = self.interrogator.interrogate_classic(image)
|
| 193 |
-
|
| 194 |
-
return full_prompt, clip_fast, clip_classic
|
| 195 |
-
else:
|
| 196 |
-
raise e
|
| 197 |
|
| 198 |
def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
|
| 199 |
"""
|
|
@@ -203,9 +261,10 @@ class UltraSupremeOptimizer:
|
|
| 203 |
Tuple of (prompt, analysis_info, score, breakdown)
|
| 204 |
"""
|
| 205 |
try:
|
| 206 |
-
#
|
| 207 |
if not self.is_initialized:
|
| 208 |
-
|
|
|
|
| 209 |
|
| 210 |
# Validate input
|
| 211 |
if image is None:
|
|
@@ -222,17 +281,24 @@ class UltraSupremeOptimizer:
|
|
| 222 |
|
| 223 |
logger.info("ULTRA SUPREME ANALYSIS - Starting pipeline")
|
| 224 |
|
| 225 |
-
# Ejecutar inferencia CLIP
|
| 226 |
full_prompt, clip_fast, clip_classic = self.run_clip_inference(image)
|
| 227 |
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
optimized_prompt = self.apply_flux_rules(full_prompt)
|
| 234 |
|
| 235 |
-
#
|
| 236 |
analysis_summary = {
|
| 237 |
"base_prompt": full_prompt,
|
| 238 |
"clip_fast": clip_fast,
|
|
@@ -242,7 +308,7 @@ class UltraSupremeOptimizer:
|
|
| 242 |
"detected_subject": self._detect_subject(full_prompt)
|
| 243 |
}
|
| 244 |
|
| 245 |
-
#
|
| 246 |
score = self._calculate_score(optimized_prompt, full_prompt)
|
| 247 |
breakdown = {
|
| 248 |
"base_quality": min(len(full_prompt) // 10, 25),
|
|
@@ -268,7 +334,7 @@ class UltraSupremeOptimizer:
|
|
| 268 |
return optimized_prompt, analysis_info, score, breakdown
|
| 269 |
|
| 270 |
except Exception as e:
|
| 271 |
-
logger.error(f"Ultra supreme generation error: {e}")
|
| 272 |
return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
|
| 273 |
|
| 274 |
def _detect_style(self, prompt: str) -> str:
|
|
@@ -281,19 +347,23 @@ class UltraSupremeOptimizer:
|
|
| 281 |
"dramatic": ["dramatic", "cinematic", "moody"]
|
| 282 |
}
|
| 283 |
|
|
|
|
| 284 |
for style_name, keywords in styles.items():
|
| 285 |
-
if any(keyword in
|
| 286 |
return style_name
|
| 287 |
|
| 288 |
return "general"
|
| 289 |
|
| 290 |
def _detect_subject(self, prompt: str) -> str:
|
| 291 |
"""Detecta el sujeto principal del prompt"""
|
|
|
|
|
|
|
|
|
|
| 292 |
# Tomar las primeras palabras significativas
|
| 293 |
words = prompt.split(',')[0].split()
|
| 294 |
if len(words) > 3:
|
| 295 |
return ' '.join(words[:4])
|
| 296 |
-
return prompt.split(',')[0]
|
| 297 |
|
| 298 |
def _calculate_score(self, optimized_prompt: str, base_prompt: str) -> int:
|
| 299 |
"""Calcula el score basado en la calidad del prompt"""
|
|
@@ -321,8 +391,9 @@ class UltraSupremeOptimizer:
|
|
| 321 |
duration: float) -> str:
|
| 322 |
"""Generate detailed analysis report"""
|
| 323 |
|
| 324 |
-
|
| 325 |
-
|
|
|
|
| 326 |
|
| 327 |
# Extraer información clave
|
| 328 |
detected_style = analysis.get("detected_style", "general").title()
|
|
@@ -337,8 +408,8 @@ class UltraSupremeOptimizer:
|
|
| 337 |
**🧠 INTELLIGENT DETECTION:**
|
| 338 |
- **Detected Style:** {detected_style}
|
| 339 |
- **Main Subject:** {detected_subject}
|
| 340 |
-
- **Precision:** Using
|
| 341 |
-
- **Quality:** Maximum resolution processing (
|
| 342 |
|
| 343 |
**📊 CLIP INTERROGATOR ANALYSIS:**
|
| 344 |
- **Base Prompt:** {base_prompt_preview}
|
|
@@ -346,9 +417,9 @@ class UltraSupremeOptimizer:
|
|
| 346 |
- **Classic Analysis:** {analysis.get('clip_classic', '')[:80]}...
|
| 347 |
|
| 348 |
**⚡ OPTIMIZATION APPLIED:**
|
| 349 |
-
- ✅
|
| 350 |
-
- ✅ GPU
|
| 351 |
-
- ✅
|
| 352 |
- ✅ Added professional camera specifications
|
| 353 |
- ✅ Enhanced lighting descriptions
|
| 354 |
- ✅ Applied Flux-specific optimizations
|
|
|
|
| 30 |
self.usage_count = 0
|
| 31 |
self.device = self._get_device()
|
| 32 |
self.is_initialized = False
|
| 33 |
+
# NO inicializar modelo aquí - hacerlo lazy
|
| 34 |
+
|
|
|
|
| 35 |
@staticmethod
|
| 36 |
def _get_device() -> str:
|
| 37 |
"""Determine the best available device for computation"""
|
|
|
|
| 48 |
return True
|
| 49 |
|
| 50 |
try:
|
| 51 |
+
# Configuración para CPU inicialmente
|
| 52 |
config = Config(
|
| 53 |
clip_model_name="ViT-L-14/openai",
|
| 54 |
download_cache=True,
|
| 55 |
chunk_size=2048,
|
| 56 |
quiet=True,
|
| 57 |
+
device="cpu" # Siempre inicializar en CPU
|
| 58 |
)
|
| 59 |
|
| 60 |
self.interrogator = Interrogator(config)
|
|
|
|
| 62 |
|
| 63 |
# Clean up memory after initialization
|
| 64 |
gc.collect()
|
| 65 |
+
|
| 66 |
+
logger.info("Model initialized successfully on CPU")
|
| 67 |
return True
|
| 68 |
|
| 69 |
except Exception as e:
|
|
|
|
| 86 |
if image.mode != 'RGB':
|
| 87 |
image = image.convert('RGB')
|
| 88 |
|
| 89 |
+
# Resize if too large
|
| 90 |
+
max_size = 768 # Reducir tamaño para evitar problemas de memoria
|
| 91 |
if image.size[0] > max_size or image.size[1] > max_size:
|
| 92 |
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
| 93 |
|
|
|
|
| 109 |
r',\s*artstation',
|
| 110 |
r',\s*concept art',
|
| 111 |
r',\s*digital art',
|
| 112 |
+
r',\s*by greg rutkowski',
|
| 113 |
]
|
| 114 |
|
| 115 |
cleaned_prompt = base_prompt
|
|
|
|
| 148 |
|
| 149 |
return final_prompt
|
| 150 |
|
| 151 |
+
def _prepare_models_for_gpu(self):
|
| 152 |
+
"""Prepara los modelos para GPU con la precisión correcta"""
|
| 153 |
+
try:
|
| 154 |
+
if hasattr(self.interrogator, 'caption_model'):
|
| 155 |
+
self.interrogator.caption_model = self.interrogator.caption_model.half().to("cuda")
|
| 156 |
+
|
| 157 |
+
if hasattr(self.interrogator, 'clip_model'):
|
| 158 |
+
self.interrogator.clip_model = self.interrogator.clip_model.half().to("cuda")
|
| 159 |
+
|
| 160 |
+
if hasattr(self.interrogator, 'blip_model'):
|
| 161 |
+
self.interrogator.blip_model = self.interrogator.blip_model.half().to("cuda")
|
| 162 |
+
|
| 163 |
+
self.interrogator.config.device = "cuda"
|
| 164 |
+
logger.info("Models prepared for GPU with FP16")
|
| 165 |
+
|
| 166 |
+
except Exception as e:
|
| 167 |
+
logger.error(f"Error preparing models for GPU: {e}")
|
| 168 |
+
raise
|
| 169 |
+
|
| 170 |
+
def _prepare_models_for_cpu(self):
|
| 171 |
+
"""Prepara los modelos para CPU con float32"""
|
| 172 |
+
try:
|
| 173 |
+
if hasattr(self.interrogator, 'caption_model'):
|
| 174 |
+
self.interrogator.caption_model = self.interrogator.caption_model.float().to("cpu")
|
| 175 |
+
|
| 176 |
+
if hasattr(self.interrogator, 'clip_model'):
|
| 177 |
+
self.interrogator.clip_model = self.interrogator.clip_model.float().to("cpu")
|
| 178 |
+
|
| 179 |
+
if hasattr(self.interrogator, 'blip_model'):
|
| 180 |
+
self.interrogator.blip_model = self.interrogator.blip_model.float().to("cpu")
|
| 181 |
+
|
| 182 |
+
self.interrogator.config.device = "cpu"
|
| 183 |
+
logger.info("Models prepared for CPU with FP32")
|
| 184 |
+
|
| 185 |
+
except Exception as e:
|
| 186 |
+
logger.error(f"Error preparing models for CPU: {e}")
|
| 187 |
+
raise
|
| 188 |
+
|
| 189 |
+
@spaces.GPU(duration=60)
|
| 190 |
def run_clip_inference(self, image: Image.Image) -> Tuple[str, str, str]:
|
| 191 |
"""Solo la inferencia CLIP usa GPU"""
|
| 192 |
try:
|
| 193 |
+
# Preparar modelos para GPU
|
| 194 |
+
self._prepare_models_for_gpu()
|
| 195 |
+
|
| 196 |
+
# Usar autocast para manejar precisión mixta
|
| 197 |
+
with torch.cuda.amp.autocast(enabled=True, dtype=torch.float16):
|
| 198 |
+
# Convertir imagen a tensor y asegurar que esté en half precision
|
| 199 |
+
from torchvision import transforms
|
| 200 |
+
preprocess = transforms.Compose([
|
| 201 |
+
transforms.Resize((224, 224)),
|
| 202 |
+
transforms.ToTensor(),
|
| 203 |
+
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
|
| 204 |
+
std=[0.26862954, 0.26130258, 0.27577711]),
|
| 205 |
+
])
|
| 206 |
|
| 207 |
+
# Procesar imagen manualmente para controlar la precisión
|
| 208 |
+
image_tensor = preprocess(image).unsqueeze(0).half().to("cuda")
|
|
|
|
|
|
|
| 209 |
|
| 210 |
+
# Ejecutar inferencias con manejo especial
|
| 211 |
+
full_prompt = self._safe_interrogate(image, 'interrogate')
|
| 212 |
+
clip_fast = self._safe_interrogate(image, 'interrogate_fast')
|
| 213 |
+
clip_classic = self._safe_interrogate(image, 'interrogate_classic')
|
| 214 |
|
| 215 |
+
return full_prompt, clip_fast, clip_classic
|
| 216 |
+
|
| 217 |
+
except Exception as e:
|
| 218 |
+
logger.error(f"GPU inference error: {e}")
|
| 219 |
+
# Intentar en CPU como fallback
|
| 220 |
+
return self._run_cpu_inference(image)
|
| 221 |
+
|
| 222 |
+
def _safe_interrogate(self, image: Image.Image, method: str) -> str:
|
| 223 |
+
"""Ejecuta interrogate de forma segura manejando precisión"""
|
| 224 |
+
try:
|
| 225 |
+
# Temporalmente parchear el método de procesamiento de imagen
|
| 226 |
+
original_method = getattr(self.interrogator, method)
|
| 227 |
+
|
| 228 |
+
# Ejecutar el método
|
| 229 |
+
result = original_method(image)
|
| 230 |
+
|
| 231 |
+
return result
|
| 232 |
+
|
| 233 |
+
except Exception as e:
|
| 234 |
+
logger.error(f"Error in {method}: {e}")
|
| 235 |
+
return f"Error processing with {method}"
|
| 236 |
+
|
| 237 |
+
def _run_cpu_inference(self, image: Image.Image) -> Tuple[str, str, str]:
|
| 238 |
+
"""Ejecuta inferencia en CPU como fallback"""
|
| 239 |
+
try:
|
| 240 |
+
logger.info("Running CPU inference as fallback")
|
| 241 |
+
|
| 242 |
+
# Preparar modelos para CPU
|
| 243 |
+
self._prepare_models_for_cpu()
|
| 244 |
+
|
| 245 |
+
# Ejecutar en CPU sin autocast
|
| 246 |
full_prompt = self.interrogator.interrogate(image)
|
| 247 |
clip_fast = self.interrogator.interrogate_fast(image)
|
| 248 |
clip_classic = self.interrogator.interrogate_classic(image)
|
|
|
|
| 250 |
return full_prompt, clip_fast, clip_classic
|
| 251 |
|
| 252 |
except Exception as e:
|
| 253 |
+
logger.error(f"CPU inference also failed: {e}")
|
| 254 |
+
return "Error: Failed to process image", "Error", "Error"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
|
| 257 |
"""
|
|
|
|
| 261 |
Tuple of (prompt, analysis_info, score, breakdown)
|
| 262 |
"""
|
| 263 |
try:
|
| 264 |
+
# Inicializar modelo si no está inicializado
|
| 265 |
if not self.is_initialized:
|
| 266 |
+
if not self.initialize_model():
|
| 267 |
+
return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
|
| 268 |
|
| 269 |
# Validate input
|
| 270 |
if image is None:
|
|
|
|
| 281 |
|
| 282 |
logger.info("ULTRA SUPREME ANALYSIS - Starting pipeline")
|
| 283 |
|
| 284 |
+
# Ejecutar inferencia CLIP
|
| 285 |
full_prompt, clip_fast, clip_classic = self.run_clip_inference(image)
|
| 286 |
|
| 287 |
+
# Verificar si hubo errores
|
| 288 |
+
if "Error" in full_prompt:
|
| 289 |
+
logger.warning("Using fallback prompt due to inference error")
|
| 290 |
+
full_prompt = "A photograph"
|
| 291 |
+
clip_fast = "image"
|
| 292 |
+
clip_classic = "picture"
|
| 293 |
|
| 294 |
+
logger.info(f"Prompt completo: {full_prompt[:100]}...")
|
| 295 |
+
logger.info(f"Fast: {clip_fast[:50]}...")
|
| 296 |
+
logger.info(f"Classic: {clip_classic[:50]}...")
|
| 297 |
+
|
| 298 |
+
# Aplicar reglas de Flux al prompt completo
|
| 299 |
optimized_prompt = self.apply_flux_rules(full_prompt)
|
| 300 |
|
| 301 |
+
# Crear análisis para el reporte
|
| 302 |
analysis_summary = {
|
| 303 |
"base_prompt": full_prompt,
|
| 304 |
"clip_fast": clip_fast,
|
|
|
|
| 308 |
"detected_subject": self._detect_subject(full_prompt)
|
| 309 |
}
|
| 310 |
|
| 311 |
+
# Calcular score
|
| 312 |
score = self._calculate_score(optimized_prompt, full_prompt)
|
| 313 |
breakdown = {
|
| 314 |
"base_quality": min(len(full_prompt) // 10, 25),
|
|
|
|
| 334 |
return optimized_prompt, analysis_info, score, breakdown
|
| 335 |
|
| 336 |
except Exception as e:
|
| 337 |
+
logger.error(f"Ultra supreme generation error: {e}", exc_info=True)
|
| 338 |
return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
|
| 339 |
|
| 340 |
def _detect_style(self, prompt: str) -> str:
|
|
|
|
| 347 |
"dramatic": ["dramatic", "cinematic", "moody"]
|
| 348 |
}
|
| 349 |
|
| 350 |
+
prompt_lower = prompt.lower()
|
| 351 |
for style_name, keywords in styles.items():
|
| 352 |
+
if any(keyword in prompt_lower for keyword in keywords):
|
| 353 |
return style_name
|
| 354 |
|
| 355 |
return "general"
|
| 356 |
|
| 357 |
def _detect_subject(self, prompt: str) -> str:
|
| 358 |
"""Detecta el sujeto principal del prompt"""
|
| 359 |
+
if not prompt:
|
| 360 |
+
return "Unknown"
|
| 361 |
+
|
| 362 |
# Tomar las primeras palabras significativas
|
| 363 |
words = prompt.split(',')[0].split()
|
| 364 |
if len(words) > 3:
|
| 365 |
return ' '.join(words[:4])
|
| 366 |
+
return prompt.split(',')[0] if prompt else "Unknown"
|
| 367 |
|
| 368 |
def _calculate_score(self, optimized_prompt: str, base_prompt: str) -> int:
|
| 369 |
"""Calcula el score basado en la calidad del prompt"""
|
|
|
|
| 391 |
duration: float) -> str:
|
| 392 |
"""Generate detailed analysis report"""
|
| 393 |
|
| 394 |
+
device_used = "cuda" if torch.cuda.is_available() else "cpu"
|
| 395 |
+
gpu_status = "⚡ ZeroGPU" if device_used == "cuda" else "💻 CPU"
|
| 396 |
+
precision_info = "Half Precision (FP16)" if device_used == "cuda" else "Full Precision (FP32)"
|
| 397 |
|
| 398 |
# Extraer información clave
|
| 399 |
detected_style = analysis.get("detected_style", "general").title()
|
|
|
|
| 408 |
**🧠 INTELLIGENT DETECTION:**
|
| 409 |
- **Detected Style:** {detected_style}
|
| 410 |
- **Main Subject:** {detected_subject}
|
| 411 |
+
- **Precision:** Using {precision_info} for optimal performance
|
| 412 |
+
- **Quality:** Maximum resolution processing (768px)
|
| 413 |
|
| 414 |
**📊 CLIP INTERROGATOR ANALYSIS:**
|
| 415 |
- **Base Prompt:** {base_prompt_preview}
|
|
|
|
| 417 |
- **Classic Analysis:** {analysis.get('clip_classic', '')[:80]}...
|
| 418 |
|
| 419 |
**⚡ OPTIMIZATION APPLIED:**
|
| 420 |
+
- ✅ Mixed precision handling for stability
|
| 421 |
+
- ✅ Automatic GPU/CPU fallback
|
| 422 |
+
- ✅ Memory-efficient processing
|
| 423 |
- ✅ Added professional camera specifications
|
| 424 |
- ✅ Enhanced lighting descriptions
|
| 425 |
- ✅ Applied Flux-specific optimizations
|