Spaces:
Running
on
Zero
Running
on
Zero
Update analyzer.py
Browse files- analyzer.py +38 -303
analyzer.py
CHANGED
|
@@ -1,317 +1,52 @@
|
|
| 1 |
"""
|
| 2 |
-
Ultra Supreme
|
| 3 |
-
|
| 4 |
"""
|
| 5 |
|
| 6 |
-
|
| 7 |
-
import
|
| 8 |
-
import gc
|
| 9 |
-
import logging
|
| 10 |
-
from datetime import datetime
|
| 11 |
-
from typing import Tuple, Dict, Any, Optional
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
from PIL import Image
|
| 16 |
-
from clip_interrogator import Config, Interrogator
|
| 17 |
-
|
| 18 |
-
from analyzer import UltraSupremeAnalyzer
|
| 19 |
-
|
| 20 |
-
logger = logging.getLogger(__name__)
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
class UltraSupremeOptimizer:
|
| 24 |
-
"""Main optimizer class for ultra supreme image analysis"""
|
| 25 |
|
| 26 |
def __init__(self):
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
if torch.cuda.is_available():
|
| 37 |
-
return "cuda"
|
| 38 |
-
elif torch.backends.mps.is_available():
|
| 39 |
-
return "mps"
|
| 40 |
-
else:
|
| 41 |
-
return "cpu"
|
| 42 |
-
|
| 43 |
-
def initialize_model(self) -> bool:
|
| 44 |
-
"""Initialize the CLIP interrogator model"""
|
| 45 |
-
if self.is_initialized:
|
| 46 |
-
return True
|
| 47 |
-
|
| 48 |
-
try:
|
| 49 |
-
config = Config(
|
| 50 |
-
clip_model_name="ViT-L-14/openai",
|
| 51 |
-
download_cache=True,
|
| 52 |
-
chunk_size=2048,
|
| 53 |
-
quiet=True,
|
| 54 |
-
device=self.device
|
| 55 |
-
)
|
| 56 |
-
|
| 57 |
-
self.interrogator = Interrogator(config)
|
| 58 |
-
self.is_initialized = True
|
| 59 |
-
|
| 60 |
-
# Clean up memory after initialization
|
| 61 |
-
if self.device == "cpu":
|
| 62 |
-
gc.collect()
|
| 63 |
-
else:
|
| 64 |
-
torch.cuda.empty_cache()
|
| 65 |
-
|
| 66 |
-
return True
|
| 67 |
-
|
| 68 |
-
except Exception as e:
|
| 69 |
-
logger.error(f"Initialization error: {e}")
|
| 70 |
-
return False
|
| 71 |
-
|
| 72 |
-
def optimize_image(self, image: Any) -> Optional[Image.Image]:
|
| 73 |
-
"""Optimize image for processing"""
|
| 74 |
-
if image is None:
|
| 75 |
-
return None
|
| 76 |
-
|
| 77 |
-
try:
|
| 78 |
-
# Convert to PIL Image if necessary
|
| 79 |
-
if isinstance(image, np.ndarray):
|
| 80 |
-
image = Image.fromarray(image)
|
| 81 |
-
elif not isinstance(image, Image.Image):
|
| 82 |
-
image = Image.open(image)
|
| 83 |
-
|
| 84 |
-
# Convert to RGB if necessary
|
| 85 |
-
if image.mode != 'RGB':
|
| 86 |
-
image = image.convert('RGB')
|
| 87 |
-
|
| 88 |
-
# Resize if too large
|
| 89 |
-
max_size = 768 if self.device != "cpu" else 512
|
| 90 |
-
if image.size[0] > max_size or image.size[1] > max_size:
|
| 91 |
-
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
| 92 |
-
|
| 93 |
-
return image
|
| 94 |
-
|
| 95 |
-
except Exception as e:
|
| 96 |
-
logger.error(f"Image optimization error: {e}")
|
| 97 |
-
return None
|
| 98 |
-
|
| 99 |
-
def apply_flux_rules(self, base_prompt: str) -> str:
|
| 100 |
-
"""Aplica las reglas de Flux a un prompt base de CLIP Interrogator"""
|
| 101 |
-
|
| 102 |
-
# Limpiar el prompt de elementos no deseados
|
| 103 |
-
cleanup_patterns = [
|
| 104 |
-
r',\s*trending on artstation',
|
| 105 |
-
r',\s*trending on [^,]+',
|
| 106 |
-
r',\s*\d+k\s*',
|
| 107 |
-
r',\s*\d+k resolution',
|
| 108 |
-
r',\s*artstation',
|
| 109 |
-
r',\s*concept art',
|
| 110 |
-
r',\s*digital art',
|
| 111 |
-
r',\s*by greg rutkowski', # Remover artistas genéricos overused
|
| 112 |
-
]
|
| 113 |
-
|
| 114 |
-
cleaned_prompt = base_prompt
|
| 115 |
-
for pattern in cleanup_patterns:
|
| 116 |
-
cleaned_prompt = re.sub(pattern, '', cleaned_prompt, flags=re.IGNORECASE)
|
| 117 |
-
|
| 118 |
-
# Detectar el tipo de imagen para añadir configuración de cámara apropiada
|
| 119 |
-
camera_config = ""
|
| 120 |
-
if any(word in base_prompt.lower() for word in ['portrait', 'person', 'man', 'woman', 'face']):
|
| 121 |
-
camera_config = ", Shot on Hasselblad X2D 100C, 90mm f/2.5 lens at f/2.8, professional portrait photography"
|
| 122 |
-
elif any(word in base_prompt.lower() for word in ['landscape', 'mountain', 'nature', 'outdoor']):
|
| 123 |
-
camera_config = ", Shot on Phase One XT, 40mm f/4 lens at f/8, epic landscape photography"
|
| 124 |
-
elif any(word in base_prompt.lower() for word in ['street', 'urban', 'city']):
|
| 125 |
-
camera_config = ", Shot on Leica M11, 35mm f/1.4 lens at f/2.8, documentary street photography"
|
| 126 |
-
else:
|
| 127 |
-
camera_config = ", Shot on Phase One XF IQ4, 80mm f/2.8 lens at f/4, professional photography"
|
| 128 |
-
|
| 129 |
-
# Añadir mejoras de iluminación si no están presentes
|
| 130 |
-
if 'lighting' not in cleaned_prompt.lower():
|
| 131 |
-
if 'dramatic' in cleaned_prompt.lower():
|
| 132 |
-
cleaned_prompt += ", dramatic cinematic lighting"
|
| 133 |
-
elif 'portrait' in cleaned_prompt.lower():
|
| 134 |
-
cleaned_prompt += ", professional studio lighting with subtle rim light"
|
| 135 |
-
else:
|
| 136 |
-
cleaned_prompt += ", masterful natural lighting"
|
| 137 |
-
|
| 138 |
-
# Construir el prompt final
|
| 139 |
-
final_prompt = cleaned_prompt + camera_config
|
| 140 |
-
|
| 141 |
-
# Asegurar que empiece con mayúscula
|
| 142 |
-
final_prompt = final_prompt[0].upper() + final_prompt[1:] if final_prompt else final_prompt
|
| 143 |
-
|
| 144 |
-
# Limpiar espacios y comas duplicadas
|
| 145 |
-
final_prompt = re.sub(r'\s+', ' ', final_prompt)
|
| 146 |
-
final_prompt = re.sub(r',\s*,+', ',', final_prompt)
|
| 147 |
-
|
| 148 |
-
return final_prompt
|
| 149 |
-
|
| 150 |
-
@spaces.GPU
|
| 151 |
-
def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
|
| 152 |
-
"""
|
| 153 |
-
Generate ultra supreme prompt from image usando el pipeline completo
|
| 154 |
-
|
| 155 |
-
Returns:
|
| 156 |
-
Tuple of (prompt, analysis_info, score, breakdown)
|
| 157 |
-
"""
|
| 158 |
-
try:
|
| 159 |
-
# Initialize model if needed
|
| 160 |
-
if not self.is_initialized:
|
| 161 |
-
if not self.initialize_model():
|
| 162 |
-
return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
|
| 163 |
-
|
| 164 |
-
# Validate input
|
| 165 |
-
if image is None:
|
| 166 |
-
return "❌ Please upload an image.", "No image provided.", 0, {}
|
| 167 |
-
|
| 168 |
-
self.usage_count += 1
|
| 169 |
-
|
| 170 |
-
# Optimize image
|
| 171 |
-
image = self.optimize_image(image)
|
| 172 |
-
if image is None:
|
| 173 |
-
return "❌ Image processing failed.", "Invalid image format.", 0, {}
|
| 174 |
-
|
| 175 |
-
start_time = datetime.now()
|
| 176 |
-
|
| 177 |
-
# NUEVO PIPELINE: Usar CLIP Interrogator completo
|
| 178 |
-
logger.info("ULTRA SUPREME ANALYSIS - Usando pipeline completo de CLIP Interrogator")
|
| 179 |
-
|
| 180 |
-
# 1. Obtener el prompt COMPLETO de CLIP Interrogator (no solo análisis)
|
| 181 |
-
# Este incluye descripción + artistas + estilos + mediums
|
| 182 |
-
full_prompt = self.interrogator.interrogate(image)
|
| 183 |
-
logger.info(f"Prompt completo de CLIP Interrogator: {full_prompt}")
|
| 184 |
-
|
| 185 |
-
# 2. También obtener los análisis individuales para el reporte
|
| 186 |
-
clip_fast = self.interrogator.interrogate_fast(image)
|
| 187 |
-
clip_classic = self.interrogator.interrogate_classic(image)
|
| 188 |
-
|
| 189 |
-
logger.info(f"Análisis Fast: {clip_fast}")
|
| 190 |
-
logger.info(f"Análisis Classic: {clip_classic}")
|
| 191 |
-
|
| 192 |
-
# 3. Aplicar reglas de Flux al prompt completo
|
| 193 |
-
import re
|
| 194 |
-
optimized_prompt = self.apply_flux_rules(full_prompt)
|
| 195 |
-
|
| 196 |
-
# 4. Crear análisis para el reporte (simplificado)
|
| 197 |
-
analysis_summary = {
|
| 198 |
-
"base_prompt": full_prompt,
|
| 199 |
-
"clip_fast": clip_fast,
|
| 200 |
-
"clip_classic": clip_classic,
|
| 201 |
-
"optimized": optimized_prompt,
|
| 202 |
-
"detected_style": self._detect_style(full_prompt),
|
| 203 |
-
"detected_subject": self._detect_subject(full_prompt)
|
| 204 |
-
}
|
| 205 |
-
|
| 206 |
-
# 5. Calcular score basado en la riqueza del prompt
|
| 207 |
-
score = self._calculate_score(optimized_prompt, full_prompt)
|
| 208 |
-
breakdown = {
|
| 209 |
-
"base_quality": min(len(full_prompt) // 10, 25),
|
| 210 |
-
"technical_enhancement": 25 if "Shot on" in optimized_prompt else 0,
|
| 211 |
-
"lighting_quality": 25 if "lighting" in optimized_prompt.lower() else 0,
|
| 212 |
-
"composition": 25 if any(word in optimized_prompt.lower() for word in ["professional", "masterful", "epic"]) else 0
|
| 213 |
-
}
|
| 214 |
-
score = sum(breakdown.values())
|
| 215 |
-
|
| 216 |
-
end_time = datetime.now()
|
| 217 |
-
duration = (end_time - start_time).total_seconds()
|
| 218 |
-
|
| 219 |
-
# Memory cleanup
|
| 220 |
-
if self.device == "cpu":
|
| 221 |
-
gc.collect()
|
| 222 |
-
else:
|
| 223 |
-
torch.cuda.empty_cache()
|
| 224 |
-
|
| 225 |
-
# Generate analysis report
|
| 226 |
-
analysis_info = self._generate_analysis_report(
|
| 227 |
-
analysis_summary, score, breakdown, duration
|
| 228 |
-
)
|
| 229 |
-
|
| 230 |
-
return optimized_prompt, analysis_info, score, breakdown
|
| 231 |
-
|
| 232 |
-
except Exception as e:
|
| 233 |
-
logger.error(f"Ultra supreme generation error: {e}")
|
| 234 |
-
return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
|
| 235 |
-
|
| 236 |
-
def _detect_style(self, prompt: str) -> str:
|
| 237 |
-
"""Detecta el estilo principal del prompt"""
|
| 238 |
-
styles = {
|
| 239 |
-
"portrait": ["portrait", "person", "face", "headshot"],
|
| 240 |
-
"landscape": ["landscape", "mountain", "nature", "scenery"],
|
| 241 |
-
"street": ["street", "urban", "city"],
|
| 242 |
-
"artistic": ["artistic", "abstract", "conceptual"],
|
| 243 |
-
"dramatic": ["dramatic", "cinematic", "moody"]
|
| 244 |
}
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
return "
|
| 251 |
-
|
| 252 |
-
def
|
| 253 |
-
"""
|
| 254 |
-
# Tomar las primeras palabras significativas
|
| 255 |
-
words = prompt.split(',')[0].split()
|
| 256 |
-
if len(words) > 3:
|
| 257 |
-
return ' '.join(words[:4])
|
| 258 |
-
return prompt.split(',')[0]
|
| 259 |
-
|
| 260 |
-
def _calculate_score(self, optimized_prompt: str, base_prompt: str) -> int:
|
| 261 |
-
"""Calcula el score basado en la calidad del prompt"""
|
| 262 |
score = 0
|
|
|
|
| 263 |
|
| 264 |
-
#
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
# Technical enhancement
|
| 268 |
-
if "Shot on" in optimized_prompt:
|
| 269 |
score += 25
|
|
|
|
| 270 |
|
| 271 |
-
|
| 272 |
-
if "lighting" in optimized_prompt.lower():
|
| 273 |
score += 25
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
if
|
| 277 |
score += 25
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
|
| 279 |
-
return min(score, 100)
|
| 280 |
-
|
| 281 |
-
def _generate_analysis_report(self, analysis: Dict[str, Any],
|
| 282 |
-
score: int, breakdown: Dict[str, int],
|
| 283 |
-
duration: float) -> str:
|
| 284 |
-
"""Generate detailed analysis report"""
|
| 285 |
-
|
| 286 |
-
gpu_status = "⚡ ZeroGPU" if torch.cuda.is_available() else "💻 CPU"
|
| 287 |
-
|
| 288 |
-
# Extraer información clave
|
| 289 |
-
detected_style = analysis.get("detected_style", "general").title()
|
| 290 |
-
detected_subject = analysis.get("detected_subject", "Unknown")
|
| 291 |
-
base_prompt_preview = analysis.get("base_prompt", "")[:100] + "..." if len(analysis.get("base_prompt", "")) > 100 else analysis.get("base_prompt", "")
|
| 292 |
-
|
| 293 |
-
analysis_info = f"""**🚀 ULTRA SUPREME ANALYSIS COMPLETE**
|
| 294 |
-
**Processing:** {gpu_status} • {duration:.1f}s • Full CLIP Interrogator Pipeline
|
| 295 |
-
**Ultra Score:** {score}/100 • Breakdown: Base({breakdown.get('base_quality',0)}) Technical({breakdown.get('technical_enhancement',0)}) Lighting({breakdown.get('lighting_quality',0)}) Composition({breakdown.get('composition',0)})
|
| 296 |
-
**Generation:** #{self.usage_count}
|
| 297 |
-
|
| 298 |
-
**🧠 INTELLIGENT DETECTION:**
|
| 299 |
-
- **Detected Style:** {detected_style}
|
| 300 |
-
- **Main Subject:** {detected_subject}
|
| 301 |
-
- **Pipeline:** CLIP Interrogator → Flux Optimization → Technical Enhancement
|
| 302 |
-
|
| 303 |
-
**📊 CLIP INTERROGATOR ANALYSIS:**
|
| 304 |
-
- **Base Prompt:** {base_prompt_preview}
|
| 305 |
-
- **Fast Analysis:** {analysis.get('clip_fast', '')[:80]}...
|
| 306 |
-
- **Classic Analysis:** {analysis.get('clip_classic', '')[:80]}...
|
| 307 |
-
|
| 308 |
-
**⚡ OPTIMIZATION APPLIED:**
|
| 309 |
-
- ✅ Preserved CLIP Interrogator's rich description
|
| 310 |
-
- ✅ Added professional camera specifications
|
| 311 |
-
- ✅ Enhanced lighting descriptions
|
| 312 |
-
- ✅ Applied Flux-specific optimizations
|
| 313 |
-
- ✅ Removed redundant/generic elements
|
| 314 |
-
|
| 315 |
-
**🔬 Powered by Pariente AI Research + CLIP Interrogator**"""
|
| 316 |
-
|
| 317 |
-
return analysis_info
|
|
|
|
| 1 |
"""
|
| 2 |
+
Ultra Supreme Analyzer - VERSIÓN SIMPLIFICADA
|
| 3 |
+
Solo formatea, no limita
|
| 4 |
"""
|
| 5 |
|
| 6 |
+
import re
|
| 7 |
+
from typing import Dict, List, Any, Tuple
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
class UltraSupremeAnalyzer:
|
| 10 |
+
"""Analyzer simplificado que NO limita CLIP"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
def __init__(self):
|
| 13 |
+
pass
|
| 14 |
+
|
| 15 |
+
def ultra_supreme_analysis(self, clip_fast: str, clip_classic: str, clip_best: str) -> Dict[str, Any]:
|
| 16 |
+
"""Análisis mínimo - solo devuelve los datos raw"""
|
| 17 |
+
return {
|
| 18 |
+
"clip_fast": clip_fast,
|
| 19 |
+
"clip_classic": clip_classic,
|
| 20 |
+
"clip_best": clip_best,
|
| 21 |
+
"full_description": f"{clip_fast} {clip_classic} {clip_best}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
}
|
| 23 |
+
|
| 24 |
+
def build_ultra_supreme_prompt(self, ultra_analysis: Dict[str, Any], clip_results: List[str]) -> str:
|
| 25 |
+
"""NO construye nada - este método ya no se usa con el nuevo pipeline"""
|
| 26 |
+
# Este método existe solo por compatibilidad
|
| 27 |
+
# El verdadero trabajo se hace en optimizer.py con apply_flux_rules()
|
| 28 |
+
return clip_results[0] if clip_results else ""
|
| 29 |
+
|
| 30 |
+
def calculate_ultra_supreme_score(self, prompt: str, ultra_analysis: Dict[str, Any]) -> Tuple[int, Dict[str, int]]:
|
| 31 |
+
"""Calcula score basado en la longitud y riqueza del prompt"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
score = 0
|
| 33 |
+
breakdown = {}
|
| 34 |
|
| 35 |
+
# Simple scoring basado en características del prompt final
|
| 36 |
+
if len(prompt) > 50:
|
|
|
|
|
|
|
|
|
|
| 37 |
score += 25
|
| 38 |
+
breakdown["length"] = 25
|
| 39 |
|
| 40 |
+
if "Shot on" in prompt:
|
|
|
|
| 41 |
score += 25
|
| 42 |
+
breakdown["camera"] = 25
|
| 43 |
+
|
| 44 |
+
if "lighting" in prompt.lower():
|
| 45 |
score += 25
|
| 46 |
+
breakdown["lighting"] = 25
|
| 47 |
+
|
| 48 |
+
if any(word in prompt.lower() for word in ["photography", "cinematic", "professional"]):
|
| 49 |
+
score += 25
|
| 50 |
+
breakdown["style"] = 25
|
| 51 |
|
| 52 |
+
return min(score, 100), breakdown
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|