Spaces:
Running
on
Zero
Running
on
Zero
Create models.py
Browse files
models.py
ADDED
|
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Model management for FLUX Prompt Optimizer
|
| 3 |
+
Handles Florence-2 and Bagel model integration
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import logging
|
| 7 |
+
import requests
|
| 8 |
+
import spaces
|
| 9 |
+
import torch
|
| 10 |
+
from typing import Optional, Dict, Any, Tuple
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 13 |
+
|
| 14 |
+
from config import MODEL_CONFIG, get_device_config
|
| 15 |
+
from utils import clean_memory, safe_execute
|
| 16 |
+
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class BaseImageAnalyzer:
|
| 21 |
+
"""Base class for image analysis models"""
|
| 22 |
+
|
| 23 |
+
def __init__(self):
|
| 24 |
+
self.model = None
|
| 25 |
+
self.processor = None
|
| 26 |
+
self.device_config = get_device_config()
|
| 27 |
+
self.is_initialized = False
|
| 28 |
+
|
| 29 |
+
def initialize(self) -> bool:
|
| 30 |
+
"""Initialize the model"""
|
| 31 |
+
raise NotImplementedError
|
| 32 |
+
|
| 33 |
+
def analyze_image(self, image: Image.Image) -> Tuple[str, Dict[str, Any]]:
|
| 34 |
+
"""Analyze image and return description"""
|
| 35 |
+
raise NotImplementedError
|
| 36 |
+
|
| 37 |
+
def cleanup(self) -> None:
|
| 38 |
+
"""Clean up model resources"""
|
| 39 |
+
if self.model is not None:
|
| 40 |
+
del self.model
|
| 41 |
+
self.model = None
|
| 42 |
+
if self.processor is not None:
|
| 43 |
+
del self.processor
|
| 44 |
+
self.processor = None
|
| 45 |
+
clean_memory()
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class Florence2Analyzer(BaseImageAnalyzer):
|
| 49 |
+
"""Florence-2 model for image analysis"""
|
| 50 |
+
|
| 51 |
+
def __init__(self):
|
| 52 |
+
super().__init__()
|
| 53 |
+
self.config = MODEL_CONFIG["florence2"]
|
| 54 |
+
|
| 55 |
+
def initialize(self) -> bool:
|
| 56 |
+
"""Initialize Florence-2 model"""
|
| 57 |
+
if self.is_initialized:
|
| 58 |
+
return True
|
| 59 |
+
|
| 60 |
+
try:
|
| 61 |
+
logger.info("Initializing Florence-2 model...")
|
| 62 |
+
|
| 63 |
+
model_id = self.config["model_id"]
|
| 64 |
+
|
| 65 |
+
# Load processor
|
| 66 |
+
self.processor = AutoProcessor.from_pretrained(
|
| 67 |
+
model_id,
|
| 68 |
+
trust_remote_code=self.config["trust_remote_code"]
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# Load model
|
| 72 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 73 |
+
model_id,
|
| 74 |
+
trust_remote_code=self.config["trust_remote_code"],
|
| 75 |
+
torch_dtype=self.config["torch_dtype"] if self.device_config["use_gpu"] else torch.float32
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Move to appropriate device
|
| 79 |
+
if self.device_config["use_gpu"]:
|
| 80 |
+
self.model = self.model.to(self.device_config["device"])
|
| 81 |
+
else:
|
| 82 |
+
self.model = self.model.to("cpu")
|
| 83 |
+
|
| 84 |
+
self.model.eval()
|
| 85 |
+
self.is_initialized = True
|
| 86 |
+
|
| 87 |
+
logger.info(f"Florence-2 initialized on {self.device_config['device']}")
|
| 88 |
+
return True
|
| 89 |
+
|
| 90 |
+
except Exception as e:
|
| 91 |
+
logger.error(f"Florence-2 initialization failed: {e}")
|
| 92 |
+
self.cleanup()
|
| 93 |
+
return False
|
| 94 |
+
|
| 95 |
+
@spaces.GPU(duration=60)
|
| 96 |
+
def _gpu_inference(self, image: Image.Image, task_prompt: str) -> str:
|
| 97 |
+
"""Run inference on GPU with spaces decorator"""
|
| 98 |
+
try:
|
| 99 |
+
# Move model to GPU for inference
|
| 100 |
+
if self.device_config["use_gpu"]:
|
| 101 |
+
self.model = self.model.to("cuda")
|
| 102 |
+
|
| 103 |
+
# Prepare inputs
|
| 104 |
+
inputs = self.processor(text=task_prompt, images=image, return_tensors="pt")
|
| 105 |
+
|
| 106 |
+
# Move inputs to device
|
| 107 |
+
device = "cuda" if self.device_config["use_gpu"] else self.device_config["device"]
|
| 108 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 109 |
+
|
| 110 |
+
# Generate response
|
| 111 |
+
with torch.no_grad():
|
| 112 |
+
if self.device_config["use_gpu"]:
|
| 113 |
+
with torch.cuda.amp.autocast(dtype=torch.float16):
|
| 114 |
+
generated_ids = self.model.generate(
|
| 115 |
+
input_ids=inputs["input_ids"],
|
| 116 |
+
pixel_values=inputs["pixel_values"],
|
| 117 |
+
max_new_tokens=self.config["max_new_tokens"],
|
| 118 |
+
num_beams=3,
|
| 119 |
+
do_sample=False
|
| 120 |
+
)
|
| 121 |
+
else:
|
| 122 |
+
generated_ids = self.model.generate(
|
| 123 |
+
input_ids=inputs["input_ids"],
|
| 124 |
+
pixel_values=inputs["pixel_values"],
|
| 125 |
+
max_new_tokens=self.config["max_new_tokens"],
|
| 126 |
+
num_beams=3,
|
| 127 |
+
do_sample=False
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# Decode response
|
| 131 |
+
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 132 |
+
parsed = self.processor.post_process_generation(
|
| 133 |
+
generated_text,
|
| 134 |
+
task=task_prompt,
|
| 135 |
+
image_size=(image.width, image.height)
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# Extract caption
|
| 139 |
+
if task_prompt in parsed:
|
| 140 |
+
return parsed[task_prompt]
|
| 141 |
+
else:
|
| 142 |
+
return str(parsed) if parsed else ""
|
| 143 |
+
|
| 144 |
+
except Exception as e:
|
| 145 |
+
logger.error(f"Florence-2 GPU inference failed: {e}")
|
| 146 |
+
return ""
|
| 147 |
+
finally:
|
| 148 |
+
# Move model back to CPU to free GPU memory
|
| 149 |
+
if self.device_config["use_gpu"]:
|
| 150 |
+
self.model = self.model.to("cpu")
|
| 151 |
+
clean_memory()
|
| 152 |
+
|
| 153 |
+
def analyze_image(self, image: Image.Image) -> Tuple[str, Dict[str, Any]]:
|
| 154 |
+
"""Analyze image using Florence-2"""
|
| 155 |
+
if not self.is_initialized:
|
| 156 |
+
success = self.initialize()
|
| 157 |
+
if not success:
|
| 158 |
+
return "Model initialization failed", {"error": "Florence-2 not available"}
|
| 159 |
+
|
| 160 |
+
try:
|
| 161 |
+
# Define analysis tasks
|
| 162 |
+
tasks = {
|
| 163 |
+
"detailed": "<DETAILED_CAPTION>",
|
| 164 |
+
"more_detailed": "<MORE_DETAILED_CAPTION>",
|
| 165 |
+
"caption": "<CAPTION>"
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
results = {}
|
| 169 |
+
|
| 170 |
+
# Run analysis for each task
|
| 171 |
+
for task_name, task_prompt in tasks.items():
|
| 172 |
+
if self.device_config["use_gpu"]:
|
| 173 |
+
result = self._gpu_inference(image, task_prompt)
|
| 174 |
+
else:
|
| 175 |
+
result = self._cpu_inference(image, task_prompt)
|
| 176 |
+
results[task_name] = result
|
| 177 |
+
|
| 178 |
+
# Choose best result
|
| 179 |
+
if results["more_detailed"]:
|
| 180 |
+
main_description = results["more_detailed"]
|
| 181 |
+
elif results["detailed"]:
|
| 182 |
+
main_description = results["detailed"]
|
| 183 |
+
else:
|
| 184 |
+
main_description = results["caption"] or "A photograph"
|
| 185 |
+
|
| 186 |
+
# Prepare metadata
|
| 187 |
+
metadata = {
|
| 188 |
+
"model": "Florence-2",
|
| 189 |
+
"device": self.device_config["device"],
|
| 190 |
+
"all_results": results,
|
| 191 |
+
"confidence": 0.85 # Florence-2 generally reliable
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
logger.info(f"Florence-2 analysis complete: {len(main_description)} chars")
|
| 195 |
+
return main_description, metadata
|
| 196 |
+
|
| 197 |
+
except Exception as e:
|
| 198 |
+
logger.error(f"Florence-2 analysis failed: {e}")
|
| 199 |
+
return "Analysis failed", {"error": str(e)}
|
| 200 |
+
|
| 201 |
+
def _cpu_inference(self, image: Image.Image, task_prompt: str) -> str:
|
| 202 |
+
"""Run inference on CPU"""
|
| 203 |
+
try:
|
| 204 |
+
inputs = self.processor(text=task_prompt, images=image, return_tensors="pt")
|
| 205 |
+
|
| 206 |
+
with torch.no_grad():
|
| 207 |
+
generated_ids = self.model.generate(
|
| 208 |
+
input_ids=inputs["input_ids"],
|
| 209 |
+
pixel_values=inputs["pixel_values"],
|
| 210 |
+
max_new_tokens=self.config["max_new_tokens"],
|
| 211 |
+
num_beams=2, # Reduced for CPU
|
| 212 |
+
do_sample=False
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 216 |
+
parsed = self.processor.post_process_generation(
|
| 217 |
+
generated_text,
|
| 218 |
+
task=task_prompt,
|
| 219 |
+
image_size=(image.width, image.height)
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
if task_prompt in parsed:
|
| 223 |
+
return parsed[task_prompt]
|
| 224 |
+
else:
|
| 225 |
+
return str(parsed) if parsed else ""
|
| 226 |
+
|
| 227 |
+
except Exception as e:
|
| 228 |
+
logger.error(f"Florence-2 CPU inference failed: {e}")
|
| 229 |
+
return ""
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
class BagelAnalyzer(BaseImageAnalyzer):
|
| 233 |
+
"""Bagel-7B model analyzer via API"""
|
| 234 |
+
|
| 235 |
+
def __init__(self):
|
| 236 |
+
super().__init__()
|
| 237 |
+
self.config = MODEL_CONFIG["bagel"]
|
| 238 |
+
self.session = requests.Session()
|
| 239 |
+
|
| 240 |
+
def initialize(self) -> bool:
|
| 241 |
+
"""Initialize Bagel analyzer (API-based)"""
|
| 242 |
+
try:
|
| 243 |
+
# Test API connectivity
|
| 244 |
+
test_response = self.session.get(
|
| 245 |
+
self.config["api_url"],
|
| 246 |
+
timeout=self.config["timeout"]
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
if test_response.status_code == 200:
|
| 250 |
+
self.is_initialized = True
|
| 251 |
+
logger.info("Bagel API connection established")
|
| 252 |
+
return True
|
| 253 |
+
else:
|
| 254 |
+
logger.error(f"Bagel API not accessible: {test_response.status_code}")
|
| 255 |
+
return False
|
| 256 |
+
|
| 257 |
+
except Exception as e:
|
| 258 |
+
logger.error(f"Bagel initialization failed: {e}")
|
| 259 |
+
return False
|
| 260 |
+
|
| 261 |
+
def analyze_image(self, image: Image.Image) -> Tuple[str, Dict[str, Any]]:
|
| 262 |
+
"""Analyze image using Bagel-7B API"""
|
| 263 |
+
if not self.is_initialized:
|
| 264 |
+
success = self.initialize()
|
| 265 |
+
if not success:
|
| 266 |
+
return "Bagel API not available", {"error": "API connection failed"}
|
| 267 |
+
|
| 268 |
+
try:
|
| 269 |
+
# Convert image to base64 or prepare for API call
|
| 270 |
+
# Note: This is a placeholder - actual implementation would depend on Bagel API format
|
| 271 |
+
|
| 272 |
+
# For now, return a placeholder response
|
| 273 |
+
# In real implementation, you would:
|
| 274 |
+
# 1. Convert image to required format
|
| 275 |
+
# 2. Make API call to Bagel endpoint
|
| 276 |
+
# 3. Parse response
|
| 277 |
+
|
| 278 |
+
description = "Detailed image analysis via Bagel-7B (API implementation needed)"
|
| 279 |
+
metadata = {
|
| 280 |
+
"model": "Bagel-7B",
|
| 281 |
+
"method": "API",
|
| 282 |
+
"confidence": 0.8
|
| 283 |
+
}
|
| 284 |
+
|
| 285 |
+
logger.info("Bagel analysis complete (placeholder)")
|
| 286 |
+
return description, metadata
|
| 287 |
+
|
| 288 |
+
except Exception as e:
|
| 289 |
+
logger.error(f"Bagel analysis failed: {e}")
|
| 290 |
+
return "Analysis failed", {"error": str(e)}
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
class ModelManager:
|
| 294 |
+
"""Manager for handling multiple analysis models"""
|
| 295 |
+
|
| 296 |
+
def __init__(self, preferred_model: str = None):
|
| 297 |
+
self.preferred_model = preferred_model or MODEL_CONFIG["primary_model"]
|
| 298 |
+
self.analyzers = {}
|
| 299 |
+
self.current_analyzer = None
|
| 300 |
+
|
| 301 |
+
def get_analyzer(self, model_name: str = None) -> Optional[BaseImageAnalyzer]:
|
| 302 |
+
"""Get or create analyzer for specified model"""
|
| 303 |
+
model_name = model_name or self.preferred_model
|
| 304 |
+
|
| 305 |
+
if model_name not in self.analyzers:
|
| 306 |
+
if model_name == "florence2":
|
| 307 |
+
self.analyzers[model_name] = Florence2Analyzer()
|
| 308 |
+
elif model_name == "bagel":
|
| 309 |
+
self.analyzers[model_name] = BagelAnalyzer()
|
| 310 |
+
else:
|
| 311 |
+
logger.error(f"Unknown model: {model_name}")
|
| 312 |
+
return None
|
| 313 |
+
|
| 314 |
+
return self.analyzers[model_name]
|
| 315 |
+
|
| 316 |
+
def analyze_image(self, image: Image.Image, model_name: str = None) -> Tuple[str, Dict[str, Any]]:
|
| 317 |
+
"""Analyze image with specified or preferred model"""
|
| 318 |
+
analyzer = self.get_analyzer(model_name)
|
| 319 |
+
if analyzer is None:
|
| 320 |
+
return "No analyzer available", {"error": "Model not found"}
|
| 321 |
+
|
| 322 |
+
success, result = safe_execute(analyzer.analyze_image, image)
|
| 323 |
+
if success:
|
| 324 |
+
return result
|
| 325 |
+
else:
|
| 326 |
+
return "Analysis failed", {"error": result}
|
| 327 |
+
|
| 328 |
+
def cleanup_all(self) -> None:
|
| 329 |
+
"""Clean up all model resources"""
|
| 330 |
+
for analyzer in self.analyzers.values():
|
| 331 |
+
analyzer.cleanup()
|
| 332 |
+
self.analyzers.clear()
|
| 333 |
+
clean_memory()
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
# Global model manager instance
|
| 337 |
+
model_manager = ModelManager()
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
def analyze_image(image: Image.Image, model_name: str = None) -> Tuple[str, Dict[str, Any]]:
|
| 341 |
+
"""
|
| 342 |
+
Convenience function for image analysis
|
| 343 |
+
|
| 344 |
+
Args:
|
| 345 |
+
image: PIL Image to analyze
|
| 346 |
+
model_name: Optional model name ("florence2" or "bagel")
|
| 347 |
+
|
| 348 |
+
Returns:
|
| 349 |
+
Tuple of (description, metadata)
|
| 350 |
+
"""
|
| 351 |
+
return model_manager.analyze_image(image, model_name)
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
# Export main components
|
| 355 |
+
__all__ = [
|
| 356 |
+
"BaseImageAnalyzer",
|
| 357 |
+
"Florence2Analyzer",
|
| 358 |
+
"BagelAnalyzer",
|
| 359 |
+
"ModelManager",
|
| 360 |
+
"model_manager",
|
| 361 |
+
"analyze_image"
|
| 362 |
+
]
|