Spaces:
Sleeping
Sleeping
| import os | |
| import google.generativeai as genai | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from langchain_community.vectorstores import FAISS | |
| from langchain.chains import RetrievalQA, ConversationalRetrievalChain | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| from langchain.prompts import PromptTemplate | |
| from pinecone import Pinecone, ServerlessSpec | |
| from langchain_pinecone import PineconeVectorStore | |
| from dotenv import load_dotenv | |
| import threading | |
| from datetime import datetime | |
| import time | |
| from langchain.schema import HumanMessage, AIMessage | |
| from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
| import functools | |
| import hashlib | |
| import logging | |
| import random | |
| # Configure logging | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
| ) | |
| logger = logging.getLogger(__name__) | |
| # Load environment variables | |
| load_dotenv() | |
| # Configure API keys from environment variables | |
| google_api_key = os.getenv("GOOGLE_API_KEY") | |
| pinecone_api_key = os.getenv("PINECONE_API_KEY") | |
| if not google_api_key or not pinecone_api_key: | |
| raise ValueError("Missing required API keys in environment variables") | |
| os.environ["GOOGLE_API_KEY"] = google_api_key | |
| os.environ["PINECONE_API_KEY"] = pinecone_api_key | |
| genai.configure(api_key=google_api_key) | |
| # Lấy model chatbot | |
| model = ChatGoogleGenerativeAI(model="gemini-1.5-flash-8b-latest", | |
| temperature=0.8) | |
| # Lấy model embedding | |
| embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") | |
| # Biến lưu history cho từng user (dạng chuỗi) | |
| user_histories = {} | |
| history_lock = threading.Lock() | |
| # Cache for responses | |
| response_cache = {} | |
| cache_lock = threading.Lock() | |
| # Maximum cache size và thời gian sống (30 phút) | |
| MAX_CACHE_SIZE = 100 | |
| CACHE_TTL = 1800 # 30 phút tính bằng giây | |
| # Create a prompt template with conversation history | |
| prompt = PromptTemplate( | |
| template = """Goal: | |
| You are a professional tour guide assistant that assists users in finding information about places in Da Nang, Vietnam. | |
| You can provide details on restaurants, cafes, hotels, attractions, and other local venues. You have to chat with users, who are Da Nang tourists. | |
| Return Format: | |
| Respond in friendly, natural, and concise English like a real tour guide. | |
| Warning: | |
| Let's support users like a real tour guide, not a bot. The information in context is your own knowledge. | |
| Your knowledge is provided in the Context. All of information in Context is about Da Nang, Vietnam. | |
| You just care about current time that user mention when user ask about Solana event. | |
| If you do not have enough information to answer user's question, reply with "I don't know. I don't have information about that". | |
| Context: | |
| {context} | |
| Conversation History: | |
| {chat_history} | |
| User question: | |
| {question} | |
| Your answer: | |
| """, | |
| input_variables = ["context", "question", "chat_history"], | |
| ) | |
| def get_history(user_id): | |
| """Get conversation history for a specific user""" | |
| with history_lock: | |
| return user_histories.get(user_id, "") | |
| def update_history(user_id, new_entry): | |
| """Update conversation history for a user. | |
| new_entry should be a string containing the new conversation information, e.g.: | |
| "User: {question}\nBot: {answer}\n" | |
| """ | |
| with history_lock: | |
| current_history = user_histories.get(user_id, "") | |
| # Store only the last 30 interactions by keeping the 60 most recent lines | |
| # (assuming 2 lines per interaction: 1 for user, 1 for bot) | |
| history_lines = current_history.split('\n') | |
| if len(history_lines) > 20: | |
| history_lines = history_lines[-20:] | |
| current_history = '\n'.join(history_lines) | |
| updated_history = current_history + new_entry + "\n" | |
| user_histories[user_id] = updated_history | |
| def string_to_message_history(history_str): | |
| """Convert string-based history to LangChain message history format""" | |
| if not history_str.strip(): | |
| return [] | |
| messages = [] | |
| lines = history_str.strip().split('\n') | |
| i = 0 | |
| while i < len(lines): | |
| line = lines[i].strip() | |
| if line.startswith("User:"): | |
| user_message = line[5:].strip() # Get the user message without "User:" | |
| messages.append(HumanMessage(content=user_message)) | |
| # Look for a Bot response (should be the next line) | |
| if i + 1 < len(lines) and lines[i + 1].strip().startswith("Bot:"): | |
| bot_response = lines[i + 1][4:].strip() # Get bot response without "Bot:" | |
| messages.append(AIMessage(content=bot_response)) | |
| i += 2 # Skip the bot line too | |
| else: | |
| i += 1 | |
| else: | |
| i += 1 # Skip any unexpected format lines | |
| return messages | |
| # Singleton pattern để chỉ khởi tạo retriever một lần | |
| _retriever_instance = None | |
| _retriever_lock = threading.Lock() | |
| def get_chain(): | |
| """Get the retrieval chain with Pinecone vector store (singleton pattern)""" | |
| global _retriever_instance | |
| # Nếu đã có instance, trả về ngay | |
| if _retriever_instance is not None: | |
| return _retriever_instance | |
| # Thread-safe khởi tạo | |
| with _retriever_lock: | |
| # Kiểm tra lại trong trường hợp một thread khác đã khởi tạo | |
| if _retriever_instance is not None: | |
| return _retriever_instance | |
| try: | |
| start_time = time.time() | |
| pc = Pinecone( | |
| api_key=os.environ["PINECONE_API_KEY"] | |
| ) | |
| # Get the vector store from the existing index | |
| vectorstore = PineconeVectorStore.from_existing_index( | |
| index_name="testbot768", | |
| embedding=embeddings, | |
| text_key="text" | |
| ) | |
| _retriever_instance = vectorstore.as_retriever(search_kwargs={"k": 3}) | |
| logger.info(f"Pinecone retriever initialized in {time.time() - start_time:.2f} seconds") | |
| return _retriever_instance | |
| except Exception as e: | |
| logger.error(f"Error getting vector store from Pinecone: {e}") | |
| # Fallback to a local vector store or return None | |
| try: | |
| # Try to load a local FAISS index if it exists | |
| start_time = time.time() | |
| vectorstore = FAISS.load_local("faiss_index", embeddings) | |
| _retriever_instance = vectorstore.as_retriever(search_kwargs={"k": 3}) | |
| logger.info(f"FAISS retriever initialized in {time.time() - start_time:.2f} seconds") | |
| return _retriever_instance | |
| except Exception as faiss_error: | |
| logger.error(f"Error getting FAISS vector store: {faiss_error}") | |
| return None | |
| def clean_cache(): | |
| """Clean expired cache entries""" | |
| with cache_lock: | |
| current_time = time.time() | |
| expired_keys = [k for k, v in response_cache.items() if current_time - v['timestamp'] > CACHE_TTL] | |
| for key in expired_keys: | |
| del response_cache[key] | |
| # Nếu cache vẫn quá lớn, xóa các mục cũ nhất | |
| if len(response_cache) > MAX_CACHE_SIZE: | |
| # Sắp xếp theo thời gian và giữ lại MAX_CACHE_SIZE mục mới nhất | |
| sorted_items = sorted(response_cache.items(), key=lambda x: x[1]['timestamp']) | |
| items_to_remove = sorted_items[:len(sorted_items) - MAX_CACHE_SIZE] | |
| for key, _ in items_to_remove: | |
| del response_cache[key] | |
| def generate_cache_key(request, user_id): | |
| """Generate a unique cache key from the request and user_id""" | |
| # Tạo một chuỗi kết hợp để hash | |
| combined = f"{request.strip().lower()}:{user_id}" | |
| # Tạo MD5 hash | |
| return hashlib.md5(combined.encode()).hexdigest() | |
| def chat(request, user_id="default_user"): | |
| """Process a chat request from a specific user""" | |
| start_time = time.time() | |
| # Định kỳ xóa các mục cache hết hạn | |
| if random.random() < 0.1: # 10% cơ hội mỗi lần gọi | |
| clean_cache() | |
| # Tạo cache key | |
| cache_key = generate_cache_key(request, user_id) | |
| # Kiểm tra cache | |
| with cache_lock: | |
| if cache_key in response_cache: | |
| cache_data = response_cache[cache_key] | |
| # Kiểm tra thời gian sống | |
| if time.time() - cache_data['timestamp'] <= CACHE_TTL: | |
| logger.info(f"Cache hit for user {user_id}, request: '{request[:30]}...'") | |
| # Cập nhật timestamp để reset TTL | |
| cache_data['timestamp'] = time.time() | |
| # Vẫn cập nhật lịch sử trò chuyện | |
| new_entry = f"User: {request}\nBot: {cache_data['response']}" | |
| update_history(user_id, new_entry) | |
| return cache_data['response'] | |
| try: | |
| retriever = get_chain() | |
| if not retriever: | |
| return "Error: Could not initialize retriever" | |
| current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| retrieved_docs = retriever.get_relevant_documents(request) | |
| context = "\n".join([doc.page_content for doc in retrieved_docs]) | |
| # context = context + "\n(Current time: " + current_time + ")" | |
| # print("Context:", context) | |
| # print(prompt.format( | |
| # context=context, | |
| # question=request, | |
| # chat_history=get_history(user_id) | |
| # )) | |
| response = model.invoke( | |
| prompt.format( | |
| context=context, | |
| question=request, | |
| chat_history=get_history(user_id) | |
| ) | |
| ) | |
| answer = str(response.content) | |
| new_entry = f"User: {request}\nBot: {answer}" | |
| update_history(user_id, new_entry) | |
| # print(get_history(user_id)) | |
| # Lưu vào cache | |
| with cache_lock: | |
| response_cache[cache_key] = { | |
| 'response': answer, | |
| 'timestamp': time.time() | |
| } | |
| logger.info(f"Total processing time: {time.time() - start_time:.2f} seconds") | |
| return answer | |
| except Exception as e: | |
| logger.error(f"Error in chat: {e}") | |
| return f"I don't know how to answer that right now. Let me forward this to the admin team." | |
| def clear_memory(user_id="default_user"): | |
| """Clear the conversation history for a specific user""" | |
| with history_lock: | |
| if user_id in user_histories: | |
| del user_histories[user_id] | |
| return f"Conversation history cleared for user {user_id}" | |
| return f"No conversation history found for user {user_id}" |