Spaces:
Sleeping
Sleeping
update history chat
Browse files- NLP_model/chatbot.py +65 -149
- mongodb.py +71 -0
NLP_model/chatbot.py
CHANGED
|
@@ -6,26 +6,14 @@ from langchain_community.vectorstores import FAISS
|
|
| 6 |
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
|
| 7 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 8 |
from langchain.prompts import PromptTemplate
|
|
|
|
| 9 |
from pinecone import Pinecone, ServerlessSpec
|
| 10 |
from langchain_pinecone import PineconeVectorStore
|
| 11 |
from dotenv import load_dotenv
|
| 12 |
import threading
|
| 13 |
from datetime import datetime
|
| 14 |
-
import time
|
| 15 |
from langchain.schema import HumanMessage, AIMessage
|
| 16 |
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
| 17 |
-
import functools
|
| 18 |
-
import hashlib
|
| 19 |
-
import logging
|
| 20 |
-
import random
|
| 21 |
-
|
| 22 |
-
# Configure logging
|
| 23 |
-
logging.basicConfig(
|
| 24 |
-
level=logging.INFO,
|
| 25 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 26 |
-
)
|
| 27 |
-
logger = logging.getLogger(__name__)
|
| 28 |
-
|
| 29 |
# Load environment variables
|
| 30 |
load_dotenv()
|
| 31 |
|
|
@@ -41,38 +29,38 @@ os.environ["PINECONE_API_KEY"] = pinecone_api_key
|
|
| 41 |
|
| 42 |
genai.configure(api_key=google_api_key)
|
| 43 |
|
| 44 |
-
#
|
| 45 |
model = ChatGoogleGenerativeAI(model="gemini-1.5-flash-8b-latest",
|
| 46 |
temperature=0.8)
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
#
|
| 49 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 50 |
|
|
|
|
| 51 |
# Biến lưu history cho từng user (dạng chuỗi)
|
| 52 |
user_histories = {}
|
| 53 |
history_lock = threading.Lock()
|
| 54 |
|
| 55 |
-
# Cache for responses
|
| 56 |
-
response_cache = {}
|
| 57 |
-
cache_lock = threading.Lock()
|
| 58 |
-
# Maximum cache size và thời gian sống (30 phút)
|
| 59 |
-
MAX_CACHE_SIZE = 100
|
| 60 |
-
CACHE_TTL = 1800 # 30 phút tính bằng giây
|
| 61 |
-
|
| 62 |
# Create a prompt template with conversation history
|
| 63 |
prompt = PromptTemplate(
|
| 64 |
template = """Goal:
|
| 65 |
You are a professional tour guide assistant that assists users in finding information about places in Da Nang, Vietnam.
|
| 66 |
You can provide details on restaurants, cafes, hotels, attractions, and other local venues. You have to chat with users, who are Da Nang tourists.
|
| 67 |
|
|
|
|
| 68 |
Return Format:
|
| 69 |
-
Respond in
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
Warning:
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
If you do not have enough information to answer user's question, reply with "I don't know. I don't have information about that".
|
| 76 |
|
| 77 |
Context:
|
| 78 |
{context}
|
|
@@ -103,8 +91,8 @@ def update_history(user_id, new_entry):
|
|
| 103 |
# Store only the last 30 interactions by keeping the 60 most recent lines
|
| 104 |
# (assuming 2 lines per interaction: 1 for user, 1 for bot)
|
| 105 |
history_lines = current_history.split('\n')
|
| 106 |
-
if len(history_lines) >
|
| 107 |
-
history_lines = history_lines[-
|
| 108 |
current_history = '\n'.join(history_lines)
|
| 109 |
|
| 110 |
updated_history = current_history + new_entry + "\n"
|
|
@@ -137,145 +125,73 @@ def string_to_message_history(history_str):
|
|
| 137 |
|
| 138 |
return messages
|
| 139 |
|
| 140 |
-
# Singleton pattern để chỉ khởi tạo retriever một lần
|
| 141 |
-
_retriever_instance = None
|
| 142 |
-
_retriever_lock = threading.Lock()
|
| 143 |
-
|
| 144 |
def get_chain():
|
| 145 |
-
"""Get the retrieval chain with Pinecone vector store
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
return _retriever_instance
|
| 151 |
-
|
| 152 |
-
# Thread-safe khởi tạo
|
| 153 |
-
with _retriever_lock:
|
| 154 |
-
# Kiểm tra lại trong trường hợp một thread khác đã khởi tạo
|
| 155 |
-
if _retriever_instance is not None:
|
| 156 |
-
return _retriever_instance
|
| 157 |
-
|
| 158 |
-
try:
|
| 159 |
-
start_time = time.time()
|
| 160 |
-
pc = Pinecone(
|
| 161 |
-
api_key=os.environ["PINECONE_API_KEY"]
|
| 162 |
-
)
|
| 163 |
-
|
| 164 |
-
# Get the vector store from the existing index
|
| 165 |
-
vectorstore = PineconeVectorStore.from_existing_index(
|
| 166 |
-
index_name="testbot768",
|
| 167 |
-
embedding=embeddings,
|
| 168 |
-
text_key="text"
|
| 169 |
-
)
|
| 170 |
-
|
| 171 |
-
_retriever_instance = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 172 |
-
logger.info(f"Pinecone retriever initialized in {time.time() - start_time:.2f} seconds")
|
| 173 |
-
return _retriever_instance
|
| 174 |
-
except Exception as e:
|
| 175 |
-
logger.error(f"Error getting vector store from Pinecone: {e}")
|
| 176 |
-
# Fallback to a local vector store or return None
|
| 177 |
-
try:
|
| 178 |
-
# Try to load a local FAISS index if it exists
|
| 179 |
-
start_time = time.time()
|
| 180 |
-
vectorstore = FAISS.load_local("faiss_index", embeddings)
|
| 181 |
-
_retriever_instance = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 182 |
-
logger.info(f"FAISS retriever initialized in {time.time() - start_time:.2f} seconds")
|
| 183 |
-
return _retriever_instance
|
| 184 |
-
except Exception as faiss_error:
|
| 185 |
-
logger.error(f"Error getting FAISS vector store: {faiss_error}")
|
| 186 |
-
return None
|
| 187 |
-
|
| 188 |
-
def clean_cache():
|
| 189 |
-
"""Clean expired cache entries"""
|
| 190 |
-
with cache_lock:
|
| 191 |
-
current_time = time.time()
|
| 192 |
-
expired_keys = [k for k, v in response_cache.items() if current_time - v['timestamp'] > CACHE_TTL]
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
"""Generate a unique cache key from the request and user_id"""
|
| 208 |
-
# Tạo một chuỗi kết hợp để hash
|
| 209 |
-
combined = f"{request.strip().lower()}:{user_id}"
|
| 210 |
-
# Tạo MD5 hash
|
| 211 |
-
return hashlib.md5(combined.encode()).hexdigest()
|
| 212 |
|
| 213 |
def chat(request, user_id="default_user"):
|
| 214 |
"""Process a chat request from a specific user"""
|
| 215 |
-
start_time = time.time()
|
| 216 |
-
|
| 217 |
-
# Định kỳ xóa các mục cache hết hạn
|
| 218 |
-
if random.random() < 0.1: # 10% cơ hội mỗi lần gọi
|
| 219 |
-
clean_cache()
|
| 220 |
-
|
| 221 |
-
# Tạo cache key
|
| 222 |
-
cache_key = generate_cache_key(request, user_id)
|
| 223 |
-
|
| 224 |
-
# Kiểm tra cache
|
| 225 |
-
with cache_lock:
|
| 226 |
-
if cache_key in response_cache:
|
| 227 |
-
cache_data = response_cache[cache_key]
|
| 228 |
-
# Kiểm tra thời gian sống
|
| 229 |
-
if time.time() - cache_data['timestamp'] <= CACHE_TTL:
|
| 230 |
-
logger.info(f"Cache hit for user {user_id}, request: '{request[:30]}...'")
|
| 231 |
-
# Cập nhật timestamp để reset TTL
|
| 232 |
-
cache_data['timestamp'] = time.time()
|
| 233 |
-
# Vẫn cập nhật lịch sử trò chuyện
|
| 234 |
-
new_entry = f"User: {request}\nBot: {cache_data['response']}"
|
| 235 |
-
update_history(user_id, new_entry)
|
| 236 |
-
return cache_data['response']
|
| 237 |
try:
|
|
|
|
| 238 |
retriever = get_chain()
|
| 239 |
if not retriever:
|
| 240 |
return "Error: Could not initialize retriever"
|
| 241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 243 |
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
#
|
| 247 |
-
# print("Context:", context)
|
| 248 |
|
| 249 |
-
#
|
| 250 |
-
#
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
chat_history=get_history(user_id)
|
| 259 |
-
)
|
| 260 |
)
|
| 261 |
-
answer = str(response.content)
|
| 262 |
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
|
| 267 |
-
#
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
'timestamp': time.time()
|
| 272 |
-
}
|
| 273 |
|
| 274 |
-
|
| 275 |
return answer
|
| 276 |
except Exception as e:
|
| 277 |
-
|
| 278 |
-
return f"I
|
| 279 |
|
| 280 |
def clear_memory(user_id="default_user"):
|
| 281 |
"""Clear the conversation history for a specific user"""
|
|
@@ -283,4 +199,4 @@ def clear_memory(user_id="default_user"):
|
|
| 283 |
if user_id in user_histories:
|
| 284 |
del user_histories[user_id]
|
| 285 |
return f"Conversation history cleared for user {user_id}"
|
| 286 |
-
return f"No conversation history found for user {user_id}"
|
|
|
|
| 6 |
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
|
| 7 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 8 |
from langchain.prompts import PromptTemplate
|
| 9 |
+
from langchain_ollama import OllamaLLM
|
| 10 |
from pinecone import Pinecone, ServerlessSpec
|
| 11 |
from langchain_pinecone import PineconeVectorStore
|
| 12 |
from dotenv import load_dotenv
|
| 13 |
import threading
|
| 14 |
from datetime import datetime
|
|
|
|
| 15 |
from langchain.schema import HumanMessage, AIMessage
|
| 16 |
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# Load environment variables
|
| 18 |
load_dotenv()
|
| 19 |
|
|
|
|
| 29 |
|
| 30 |
genai.configure(api_key=google_api_key)
|
| 31 |
|
| 32 |
+
#lấy model chatbot
|
| 33 |
model = ChatGoogleGenerativeAI(model="gemini-1.5-flash-8b-latest",
|
| 34 |
temperature=0.8)
|
| 35 |
+
# model = OllamaLLM(model="llama2")
|
| 36 |
+
# print("Llama2 đã được tải thành công!")
|
| 37 |
|
| 38 |
+
#lấy model embedding
|
| 39 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 40 |
|
| 41 |
+
|
| 42 |
# Biến lưu history cho từng user (dạng chuỗi)
|
| 43 |
user_histories = {}
|
| 44 |
history_lock = threading.Lock()
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
# Create a prompt template with conversation history
|
| 47 |
prompt = PromptTemplate(
|
| 48 |
template = """Goal:
|
| 49 |
You are a professional tour guide assistant that assists users in finding information about places in Da Nang, Vietnam.
|
| 50 |
You can provide details on restaurants, cafes, hotels, attractions, and other local venues. You have to chat with users, who are Da Nang tourists.
|
| 51 |
|
| 52 |
+
|
| 53 |
Return Format:
|
| 54 |
+
- Respond in clear, natural, and concise English.
|
| 55 |
+
- If you do not have enough information to answer user's question, reply with "I don't know", and explain that you are not sure about the information.
|
| 56 |
+
- When sufficient information is available in the Context, provide a specific and informative answer.
|
| 57 |
+
- Let's support users like a real tour guide, not a bot. The information in context is your own knowledge.
|
| 58 |
+
- You just care about time that user mention when they ask about Solana event.
|
| 59 |
|
| 60 |
Warning:
|
| 61 |
+
- Your knowledge is provided in the Context. All of information in Context is about Da Nang, Vietnam.
|
| 62 |
+
- Do not fabricate or guess information.
|
| 63 |
+
- Answer with "I don't know" if you don't have enough information.
|
|
|
|
| 64 |
|
| 65 |
Context:
|
| 66 |
{context}
|
|
|
|
| 91 |
# Store only the last 30 interactions by keeping the 60 most recent lines
|
| 92 |
# (assuming 2 lines per interaction: 1 for user, 1 for bot)
|
| 93 |
history_lines = current_history.split('\n')
|
| 94 |
+
if len(history_lines) > 60:
|
| 95 |
+
history_lines = history_lines[-60:]
|
| 96 |
current_history = '\n'.join(history_lines)
|
| 97 |
|
| 98 |
updated_history = current_history + new_entry + "\n"
|
|
|
|
| 125 |
|
| 126 |
return messages
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
def get_chain():
|
| 129 |
+
"""Get the retrieval chain with Pinecone vector store"""
|
| 130 |
+
try:
|
| 131 |
+
pc = Pinecone(
|
| 132 |
+
api_key=os.environ["PINECONE_API_KEY"]
|
| 133 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
# Get the vector store from the existing index
|
| 136 |
+
vectorstore = PineconeVectorStore.from_existing_index(
|
| 137 |
+
index_name="testbot768",
|
| 138 |
+
embedding=embeddings,
|
| 139 |
+
text_key="text"
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
retrieve = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 143 |
|
| 144 |
+
return retrieve
|
| 145 |
+
except Exception as e:
|
| 146 |
+
print(f"Error getting vector store: {e}")
|
| 147 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
def chat(request, user_id="default_user"):
|
| 150 |
"""Process a chat request from a specific user"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
try:
|
| 152 |
+
# Get retrieval chain
|
| 153 |
retriever = get_chain()
|
| 154 |
if not retriever:
|
| 155 |
return "Error: Could not initialize retriever"
|
| 156 |
|
| 157 |
+
# Get current conversation history as string
|
| 158 |
+
conversation_history_str = get_history(user_id)
|
| 159 |
+
|
| 160 |
+
# Convert string history to LangChain message format
|
| 161 |
+
message_history = string_to_message_history(conversation_history_str)
|
| 162 |
+
|
| 163 |
+
# Get current time
|
| 164 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 165 |
|
| 166 |
+
# Add timestamp to question
|
| 167 |
+
question_with_time = f"{request}\n(Current time: {current_time})"
|
| 168 |
+
# print("User question:", question_with_time)
|
|
|
|
| 169 |
|
| 170 |
+
# Create a ConversationalRetrievalChain
|
| 171 |
+
# Get relevant documents from retriever
|
| 172 |
+
retrieved_docs = retriever.get_relevant_documents(question_with_time)
|
| 173 |
+
print("Retrieved documents page content:", [doc.page_content for doc in retrieved_docs])
|
| 174 |
+
|
| 175 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
| 176 |
+
llm=model,
|
| 177 |
+
retriever=retriever,
|
| 178 |
+
combine_docs_chain_kwargs={"prompt": prompt}
|
|
|
|
|
|
|
| 179 |
)
|
|
|
|
| 180 |
|
| 181 |
+
# Call the chain with question and converted message history
|
| 182 |
+
response = conversation_chain({"question": question_with_time, "chat_history": message_history})
|
| 183 |
+
answer = str(response['answer'])
|
| 184 |
|
| 185 |
+
# Update conversation history string
|
| 186 |
+
new_entry = f"User: {question_with_time}\nBot: {answer}"
|
| 187 |
+
update_history(user_id, new_entry)
|
| 188 |
+
print(get_history(user_id))
|
|
|
|
|
|
|
| 189 |
|
| 190 |
+
print(answer)
|
| 191 |
return answer
|
| 192 |
except Exception as e:
|
| 193 |
+
print(f"Error in chat: {e}")
|
| 194 |
+
return f"I encountered an error: {str(e)}"
|
| 195 |
|
| 196 |
def clear_memory(user_id="default_user"):
|
| 197 |
"""Clear the conversation history for a specific user"""
|
|
|
|
| 199 |
if user_id in user_histories:
|
| 200 |
del user_histories[user_id]
|
| 201 |
return f"Conversation history cleared for user {user_id}"
|
| 202 |
+
return f"No conversation history found for user {user_id}"
|
mongodb.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from pymongo import MongoClient
|
| 3 |
+
import logging
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
|
| 6 |
+
# Load biến môi trường từ .env (nếu có)
|
| 7 |
+
load_dotenv()
|
| 8 |
+
|
| 9 |
+
# Cấu hình logging
|
| 10 |
+
logging.basicConfig(level=logging.INFO)
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
# Lấy thông tin kết nối MongoDB từ biến môi trường
|
| 14 |
+
MONGODB_URI = os.getenv("MONGODB_URI")
|
| 15 |
+
MONGODB_DB = os.getenv("MONGODB_DB")
|
| 16 |
+
MONGODB_COLLECTION = os.getenv("MONGODB_COLLECTION")
|
| 17 |
+
|
| 18 |
+
# Kết nối MongoDB sử dụng pymongo
|
| 19 |
+
client = MongoClient(MONGODB_URI)
|
| 20 |
+
db = client[MONGODB_DB]
|
| 21 |
+
collection = db[MONGODB_COLLECTION]
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def get_chat_history(user_id: int) -> str:
|
| 25 |
+
"""
|
| 26 |
+
Lấy lịch sử chat cho user_id cho trước từ MongoDB và ghép thành chuỗi theo định dạng:
|
| 27 |
+
|
| 28 |
+
Bot: ...
|
| 29 |
+
User: ...
|
| 30 |
+
Bot: ...
|
| 31 |
+
...
|
| 32 |
+
|
| 33 |
+
Giả sử:
|
| 34 |
+
- Các document chứa trường "user_id" để lọc theo user_id.
|
| 35 |
+
- Trường "factor" xác định nguồn tin (nếu factor == "user" thì là tin của User,
|
| 36 |
+
còn lại coi là tin của Bot/RAG).
|
| 37 |
+
- Trường "timestamp" dùng để sắp xếp theo thời gian (nếu có).
|
| 38 |
+
"""
|
| 39 |
+
try:
|
| 40 |
+
# Truy vấn tất cả các document có user_id, sắp xếp theo timestamp tăng dần
|
| 41 |
+
# Nếu không có trường timestamp, có thể sort theo _id
|
| 42 |
+
docs = list(collection.find({"user_id": user_id}).sort("timestamp", 1).limit(15))
|
| 43 |
+
if not docs:
|
| 44 |
+
logger.info(f"Không tìm thấy dữ liệu cho user_id: {user_id}")
|
| 45 |
+
return ""
|
| 46 |
+
|
| 47 |
+
conversation_lines = []
|
| 48 |
+
for doc in docs:
|
| 49 |
+
factor = doc.get("factor", "").lower()
|
| 50 |
+
action = doc.get("action", "").lower()
|
| 51 |
+
message = doc.get("message", "")
|
| 52 |
+
|
| 53 |
+
if action == "freely asking":
|
| 54 |
+
conversation_lines.append(f"User: {message}")
|
| 55 |
+
elif action == "response":
|
| 56 |
+
conversation_lines.append(f"Bot: {message}")
|
| 57 |
+
|
| 58 |
+
# Ghép các dòng thành chuỗi, mỗi dòng cách nhau bằng xuống dòng
|
| 59 |
+
return "\n".join(conversation_lines)
|
| 60 |
+
except Exception as e:
|
| 61 |
+
logger.error(f"Lỗi khi lấy lịch sử chat cho user_id {user_id}: {e}")
|
| 62 |
+
return ""
|
| 63 |
+
|
| 64 |
+
# if __name__ == '__main__':
|
| 65 |
+
# user_id = int(input("Nhập user_id cần lấy lịch sử chat: ").strip())
|
| 66 |
+
# history = get_chat_history(user_id)
|
| 67 |
+
# if history:
|
| 68 |
+
# print("\nLịch sử trò chuyện:")
|
| 69 |
+
# print(history)
|
| 70 |
+
# else:
|
| 71 |
+
# print(f"Không tìm thấy lịch sử chat cho user_id: {user_id}")
|