Spaces:
Sleeping
Sleeping
First demo with no history memory db and curent time
Browse files
NLP_model/__pycache__/chatbot.cpython-311.pyc
ADDED
|
Binary file (9.64 kB). View file
|
|
|
NLP_model/__pycache__/chatbot.cpython-312.pyc
ADDED
|
Binary file (2.52 kB). View file
|
|
|
NLP_model/__pycache__/read_file.cpython-311.pyc
ADDED
|
Binary file (8.49 kB). View file
|
|
|
NLP_model/__pycache__/read_file.cpython-312.pyc
ADDED
|
Binary file (1.88 kB). View file
|
|
|
NLP_model/chatbot.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import google.generativeai as genai
|
| 3 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 5 |
+
from langchain_community.vectorstores import FAISS
|
| 6 |
+
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
|
| 7 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 8 |
+
from langchain.prompts import PromptTemplate
|
| 9 |
+
from langchain_ollama import OllamaLLM
|
| 10 |
+
from pinecone import Pinecone, ServerlessSpec
|
| 11 |
+
from langchain_pinecone import PineconeVectorStore
|
| 12 |
+
from dotenv import load_dotenv
|
| 13 |
+
import threading
|
| 14 |
+
from datetime import datetime
|
| 15 |
+
from langchain.schema import HumanMessage, AIMessage
|
| 16 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
| 17 |
+
# Load environment variables
|
| 18 |
+
load_dotenv()
|
| 19 |
+
|
| 20 |
+
# Configure API keys from environment variables
|
| 21 |
+
google_api_key = os.getenv("GOOGLE_API_KEY")
|
| 22 |
+
pinecone_api_key = os.getenv("PINECONE_API_KEY")
|
| 23 |
+
|
| 24 |
+
if not google_api_key or not pinecone_api_key:
|
| 25 |
+
raise ValueError("Missing required API keys in environment variables")
|
| 26 |
+
|
| 27 |
+
os.environ["GOOGLE_API_KEY"] = google_api_key
|
| 28 |
+
os.environ["PINECONE_API_KEY"] = pinecone_api_key
|
| 29 |
+
|
| 30 |
+
genai.configure(api_key=google_api_key)
|
| 31 |
+
|
| 32 |
+
#lấy model chatbot
|
| 33 |
+
model = ChatGoogleGenerativeAI(model="gemini-1.5-flash-8b-latest",
|
| 34 |
+
temperature=0.8)
|
| 35 |
+
# model = OllamaLLM(model="llama2")
|
| 36 |
+
# print("Llama2 đã được tải thành công!")
|
| 37 |
+
|
| 38 |
+
#lấy model embedding
|
| 39 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# Biến lưu history cho từng user (dạng chuỗi)
|
| 43 |
+
user_histories = {}
|
| 44 |
+
history_lock = threading.Lock()
|
| 45 |
+
|
| 46 |
+
# Create a prompt template with conversation history
|
| 47 |
+
prompt = PromptTemplate(
|
| 48 |
+
template = """Goal:
|
| 49 |
+
You are a professional tour guide assistant that assists users in finding information about places in Da Nang, Vietnam.
|
| 50 |
+
You can provide details on restaurants, cafes, hotels, attractions, and other local venues. You have to chat with users, who are Da Nang tourists.
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
Return Format:
|
| 54 |
+
- Respond in clear, natural, and concise English.
|
| 55 |
+
- If you do not have enough information to answer user's question, reply with "I don't know", and explain that you are not sure about the information.
|
| 56 |
+
- When sufficient information is available in the Context, provide a specific and informative answer.
|
| 57 |
+
- Let's support users like a real tour guide, not a bot. The information in context is your own knowledge.
|
| 58 |
+
- You just care about time that user mention when they ask about Solana event.
|
| 59 |
+
|
| 60 |
+
Warning:
|
| 61 |
+
- Your knowledge is provided in the Context. All of information in Context is about Da Nang, Vietnam.
|
| 62 |
+
- Do not fabricate or guess information.
|
| 63 |
+
- Answer with "I don't know" if you don't have enough information.
|
| 64 |
+
|
| 65 |
+
Context:
|
| 66 |
+
{context}
|
| 67 |
+
|
| 68 |
+
Conversation History:
|
| 69 |
+
{chat_history}
|
| 70 |
+
|
| 71 |
+
User question:
|
| 72 |
+
{question}
|
| 73 |
+
|
| 74 |
+
Your answer:
|
| 75 |
+
""",
|
| 76 |
+
input_variables = ["context", "question", "chat_history"],
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
def get_history(user_id):
|
| 80 |
+
"""Get conversation history for a specific user"""
|
| 81 |
+
with history_lock:
|
| 82 |
+
return user_histories.get(user_id, "")
|
| 83 |
+
|
| 84 |
+
def update_history(user_id, new_entry):
|
| 85 |
+
"""Update conversation history for a user.
|
| 86 |
+
new_entry should be a string containing the new conversation information, e.g.:
|
| 87 |
+
"User: {question}\nBot: {answer}\n"
|
| 88 |
+
"""
|
| 89 |
+
with history_lock:
|
| 90 |
+
current_history = user_histories.get(user_id, "")
|
| 91 |
+
# Store only the last 30 interactions by keeping the 60 most recent lines
|
| 92 |
+
# (assuming 2 lines per interaction: 1 for user, 1 for bot)
|
| 93 |
+
history_lines = current_history.split('\n')
|
| 94 |
+
if len(history_lines) > 60:
|
| 95 |
+
history_lines = history_lines[-60:]
|
| 96 |
+
current_history = '\n'.join(history_lines)
|
| 97 |
+
|
| 98 |
+
updated_history = current_history + new_entry + "\n"
|
| 99 |
+
user_histories[user_id] = updated_history
|
| 100 |
+
|
| 101 |
+
def string_to_message_history(history_str):
|
| 102 |
+
"""Convert string-based history to LangChain message history format"""
|
| 103 |
+
if not history_str.strip():
|
| 104 |
+
return []
|
| 105 |
+
|
| 106 |
+
messages = []
|
| 107 |
+
lines = history_str.strip().split('\n')
|
| 108 |
+
i = 0
|
| 109 |
+
|
| 110 |
+
while i < len(lines):
|
| 111 |
+
line = lines[i].strip()
|
| 112 |
+
if line.startswith("User:"):
|
| 113 |
+
user_message = line[5:].strip() # Get the user message without "User:"
|
| 114 |
+
messages.append(HumanMessage(content=user_message))
|
| 115 |
+
|
| 116 |
+
# Look for a Bot response (should be the next line)
|
| 117 |
+
if i + 1 < len(lines) and lines[i + 1].strip().startswith("Bot:"):
|
| 118 |
+
bot_response = lines[i + 1][4:].strip() # Get bot response without "Bot:"
|
| 119 |
+
messages.append(AIMessage(content=bot_response))
|
| 120 |
+
i += 2 # Skip the bot line too
|
| 121 |
+
else:
|
| 122 |
+
i += 1
|
| 123 |
+
else:
|
| 124 |
+
i += 1 # Skip any unexpected format lines
|
| 125 |
+
|
| 126 |
+
return messages
|
| 127 |
+
|
| 128 |
+
def get_chain():
|
| 129 |
+
"""Get the retrieval chain with Pinecone vector store"""
|
| 130 |
+
try:
|
| 131 |
+
pc = Pinecone(
|
| 132 |
+
api_key=os.environ["PINECONE_API_KEY"]
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Get the vector store from the existing index
|
| 136 |
+
vectorstore = PineconeVectorStore.from_existing_index(
|
| 137 |
+
index_name="testbot768",
|
| 138 |
+
embedding=embeddings,
|
| 139 |
+
text_key="text"
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
retrieve = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 143 |
+
|
| 144 |
+
return retrieve
|
| 145 |
+
except Exception as e:
|
| 146 |
+
print(f"Error getting vector store: {e}")
|
| 147 |
+
return None
|
| 148 |
+
|
| 149 |
+
def chat(request, user_id="default_user"):
|
| 150 |
+
"""Process a chat request from a specific user"""
|
| 151 |
+
try:
|
| 152 |
+
# Get retrieval chain
|
| 153 |
+
retriever = get_chain()
|
| 154 |
+
if not retriever:
|
| 155 |
+
return "Error: Could not initialize retriever"
|
| 156 |
+
|
| 157 |
+
# Get current conversation history as string
|
| 158 |
+
conversation_history_str = get_history(user_id)
|
| 159 |
+
|
| 160 |
+
# Convert string history to LangChain message format
|
| 161 |
+
message_history = string_to_message_history(conversation_history_str)
|
| 162 |
+
|
| 163 |
+
# Get current time
|
| 164 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 165 |
+
|
| 166 |
+
# Add timestamp to question
|
| 167 |
+
question_with_time = f"{request}\n(Current time: {current_time})"
|
| 168 |
+
# print("User question:", question_with_time)
|
| 169 |
+
|
| 170 |
+
# Create a ConversationalRetrievalChain
|
| 171 |
+
# Get relevant documents from retriever
|
| 172 |
+
retrieved_docs = retriever.get_relevant_documents(question_with_time)
|
| 173 |
+
print("Retrieved documents page content:", [doc.page_content for doc in retrieved_docs])
|
| 174 |
+
|
| 175 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
| 176 |
+
llm=model,
|
| 177 |
+
retriever=retriever,
|
| 178 |
+
combine_docs_chain_kwargs={"prompt": prompt}
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
# Call the chain with question and converted message history
|
| 182 |
+
response = conversation_chain({"question": question_with_time, "chat_history": message_history})
|
| 183 |
+
answer = str(response['answer'])
|
| 184 |
+
|
| 185 |
+
# Update conversation history string
|
| 186 |
+
new_entry = f"User: {question_with_time}\nBot: {answer}"
|
| 187 |
+
update_history(user_id, new_entry)
|
| 188 |
+
print(get_history(user_id))
|
| 189 |
+
|
| 190 |
+
print(answer)
|
| 191 |
+
return answer
|
| 192 |
+
except Exception as e:
|
| 193 |
+
print(f"Error in chat: {e}")
|
| 194 |
+
return f"I encountered an error: {str(e)}"
|
| 195 |
+
|
| 196 |
+
def clear_memory(user_id="default_user"):
|
| 197 |
+
"""Clear the conversation history for a specific user"""
|
| 198 |
+
with history_lock:
|
| 199 |
+
if user_id in user_histories:
|
| 200 |
+
del user_histories[user_id]
|
| 201 |
+
return f"Conversation history cleared for user {user_id}"
|
| 202 |
+
return f"No conversation history found for user {user_id}"
|