File size: 6,245 Bytes
db406df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import streamlit as st
import requests
import json
import uuid
from typing import Dict, Any
import os
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Configuration
API_BASE_URL = os.getenv("API_BASE_URL", "https://pixerse-pixerse.hf.space")  # Default to the env value
CHAT_ENDPOINT = f"{API_BASE_URL}/api/mcp/chat"

def call_chat_api(query: str, user_id: str) -> Dict[str, Any]:
    """Call the FastAPI chat endpoint"""
    payload = {
        "query": query,
        "user_id": user_id
    }
    
    try:
        response = requests.post(
            CHAT_ENDPOINT,
            json=payload,
            headers={"Content-Type": "application/json"},
            timeout=30
        )
        
        if response.status_code == 200:
            return {
                "success": True,
                "data": response.json()
            }
        else:
            return {
                "success": False,
                "error": f"API Error: {response.status_code} - {response.text}"
            }
    except requests.exceptions.RequestException as e:
        return {
            "success": False,
            "error": f"Connection Error: {str(e)}"
        }

def main():
    st.set_page_config(
        page_title="PiXerse Chatbot",
        page_icon="🤖",
        layout="wide"
    )
    
    st.title("🤖 PiXerse AI Chatbot")
    st.markdown("---")
    
    # Initialize session state
    if "messages" not in st.session_state:
        st.session_state.messages = []
    
    if "user_id" not in st.session_state:
        st.session_state.user_id = str(uuid.uuid4())
    
    # Sidebar for configuration
    with st.sidebar:
        st.header("⚙️ Configuration")
        
        # Display user ID
        st.text_input(
            "User ID", 
            value=st.session_state.user_id, 
            disabled=True,
            help="Your unique session identifier"
        )
        
        # API Status check
        st.subheader("🔍 API Status")
        if st.button("Check API Status"):
            try:
                health_response = requests.get(f"{API_BASE_URL}/docs", timeout=5)
                if health_response.status_code == 200:
                    st.success("✅ API is running")
                else:
                    st.error("❌ API is not responding properly")
            except:
                st.error("❌ Cannot connect to API")
        
        # Clear chat button
        if st.button("🗑️ Clear Chat History"):
            st.session_state.messages = []
            st.rerun()
    
    # Main chat interface
    st.subheader("💬 Chat Interface")
    
    # Display chat messages
    chat_container = st.container()
    with chat_container:
        for message in st.session_state.messages:
            with st.chat_message(message["role"]):
                st.markdown(message["content"])
                
                # Show additional info for assistant messages
                if message["role"] == "assistant" and "metadata" in message:
                    with st.expander("📊 Response Details"):
                        metadata = message["metadata"]
                        col_meta1, col_meta2 = st.columns(2)
                        
                        with col_meta1:
                            st.metric("Token Usage", metadata.get("token_usage", "N/A"))
                            
                        with col_meta2:
                            st.metric("Tools Used", len(metadata.get("tools_used", [])))
                        
                        if metadata.get("tools_used"):
                            st.write("**Tools Used:**")
                            for tool in metadata["tools_used"]:
                                st.code(tool, language="text")
                        
                        if metadata.get("tools_response"):
                            st.write("**Tool Responses:**")
                            for i, response in enumerate(metadata["tools_response"]):
                                st.json(response)

    # Chat input (outside columns to avoid Streamlit API error)
    if prompt := st.chat_input("Type your message here..."):
        # Add user message to chat
        st.session_state.messages.append({
            "role": "user", 
            "content": prompt
        })
        
        # Rerun to display new message immediately
        st.rerun()

    # Process last message if it's from user and no assistant response yet
    if (st.session_state.messages and 
        st.session_state.messages[-1]["role"] == "user" and
        (len(st.session_state.messages) == 1 or 
         st.session_state.messages[-2]["role"] == "assistant")):
        
        user_message = st.session_state.messages[-1]["content"]
        
        # Show processing message
        with st.chat_message("assistant"):
            with st.spinner("🤔 Thinking..."):
                response = call_chat_api(user_message, st.session_state.user_id)
            
            if response["success"]:
                data = response["data"]
                assistant_message = data["response"]
                
                # Display response
                st.markdown(assistant_message)
                
                # Add assistant message to chat with metadata
                st.session_state.messages.append({
                    "role": "assistant",
                    "content": assistant_message,
                    "metadata": {
                        "token_usage": data.get("token_usage", 0),
                        "tools_used": data.get("tools_used", []),
                        "tools_response": data.get("tools_response", [])
                    }
                })
                
            else:
                error_message = f"❌ Error: {response['error']}"
                st.error(error_message)
                
                # Add error message to chat
                st.session_state.messages.append({
                    "role": "assistant",
                    "content": error_message
                })
            
            # Rerun to update the display
            st.rerun()

if __name__ == "__main__":
    # Run Streamlit UI
    main()