Spaces:
Running
Running
| import streamlit as st | |
| import torch | |
| from diffusers import AutoencoderKLWan, WanPipeline | |
| from diffusers.utils import export_to_video | |
| # Load the Wan2.1 text-to-video pipeline (1.3B version) with half precision weights | |
| model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers" | |
| st.write("Downloading and loading model... (first run may take a few minutes)") | |
| vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16) | |
| pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.float16) | |
| # (By default, the pipeline is on CPU since no .to("cuda") is called) | |
| st.title("Wan2.1 Text-to-Video Generator") | |
| prompt = st.text_input("Enter a text prompt for the video:") | |
| frames = st.slider("Number of frames (video length)", min_value=8, max_value=81, value=24) | |
| if st.button("Generate Video") and prompt: | |
| with st.spinner("Generating video... this may take a while on CPU"): | |
| # Run the pipeline to generate video frames | |
| result = pipe(prompt=prompt, height=480, width=832, num_frames=frames, num_inference_steps=20) | |
| video_frames = result.frames # list of PIL images | |
| # Save frames as video file | |
| export_to_video(video_frames, "output.mp4", fps=8) # using a lower FPS for a short video | |
| st.video("output.mp4") |