Spaces:
Runtime error
Runtime error
Immortalise
commited on
Commit
·
1c79925
1
Parent(s):
3429aba
init
Browse files- adv_prompts/chatgpt_fewshot.md +0 -0
- adv_prompts/chatgpt_zeroshot.md +0 -0
- adv_prompts/t5_fewshot.md +0 -0
- adv_prompts/t5_zeroshot.md +0 -0
- adv_prompts/ul2_fewshot.md +0 -0
- adv_prompts/ul2_zeroshot.md +0 -0
- adv_prompts/vicuna_fewshot.md +0 -0
- adv_prompts/vicuna_zeroshot.md +0 -0
- app.py +46 -0
- parse.py +203 -0
adv_prompts/chatgpt_fewshot.md
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
adv_prompts/chatgpt_zeroshot.md
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
adv_prompts/t5_fewshot.md
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
adv_prompts/t5_zeroshot.md
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
adv_prompts/ul2_fewshot.md
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
adv_prompts/ul2_zeroshot.md
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
adv_prompts/vicuna_fewshot.md
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
adv_prompts/vicuna_zeroshot.md
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
app.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from parse import retrieve
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def main():
|
| 6 |
+
st.title("Streamlit App")
|
| 7 |
+
|
| 8 |
+
model_name = st.selectbox(
|
| 9 |
+
"Select Model",
|
| 10 |
+
options=["T5", "Vicuna", "UL2", "ChatGPT"],
|
| 11 |
+
index=0,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
dataset_name = st.selectbox(
|
| 15 |
+
"Select Dataset",
|
| 16 |
+
options=[
|
| 17 |
+
"SST-2", "CoLA", "QQP", "MRPC", "MNLI", "QNLI",
|
| 18 |
+
"RTE", "WNLI", "MMLU", "SQuAD V2", "IWSLT 2017", "UN Multi", "Math"
|
| 19 |
+
],
|
| 20 |
+
index=0,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
attack_name = st.selectbox(
|
| 24 |
+
"Select Attack",
|
| 25 |
+
options=[
|
| 26 |
+
"BertAttack", "CheckList", "DeepWordBug", "StressTest", "TextFooler", "TextBugger", "Semantic"
|
| 27 |
+
],
|
| 28 |
+
index=0,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
prompt_type = st.selectbox(
|
| 32 |
+
"Select Prompt Type",
|
| 33 |
+
options=["zeroshot-task", "zeroshot-role", "fewshot-task", "fewshot-role"],
|
| 34 |
+
index=0,
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
st.write(f"Model: {model_name}")
|
| 38 |
+
st.write(f"Dataset: {dataset_name}")
|
| 39 |
+
st.write(f"Prompt Type: {prompt_type}")
|
| 40 |
+
|
| 41 |
+
if st.button("Retrieve"):
|
| 42 |
+
output = retrieve(model_name, dataset_name, attack_name, prompt_type)
|
| 43 |
+
st.write(f"Output: {output}")
|
| 44 |
+
|
| 45 |
+
if __name__ == "__main__":
|
| 46 |
+
main()
|
parse.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import re
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def split_markdown_by_title(markdown_file):
|
| 6 |
+
with open(markdown_file, 'r', encoding='utf-8') as f:
|
| 7 |
+
content = f.read()
|
| 8 |
+
|
| 9 |
+
re_str = "# cola|# mnli|# mrpc|# qnli|# qqp|# rte|# sst2|# wnli|# mmlu|# squad_v2|# iwslt|# un_multi|# math"
|
| 10 |
+
|
| 11 |
+
datasets = ["# cola", "# mnli", "# mrpc", "# qnli", "# qqp", "# rte", "# sst2", "# wnli",
|
| 12 |
+
"# mmlu", "# squad_v2", "# iwslt", "# un_multi", "# math"]
|
| 13 |
+
|
| 14 |
+
# re_str = "# cola|# mnli|# mrpc|# qnli|# qqp|# rte|# sst2|# wnli"
|
| 15 |
+
# datasets = ["# cola", "# mnli", "# mrpc", "# qnli", "# qqp", "# rte", "# sst2", "# wnli"]
|
| 16 |
+
primary_sections = re.split(re_str, content)[1:]
|
| 17 |
+
assert len(primary_sections) == len(datasets)
|
| 18 |
+
|
| 19 |
+
all_sections_dict = {}
|
| 20 |
+
|
| 21 |
+
for dataset, primary_section in zip(datasets, primary_sections):
|
| 22 |
+
re_str = "## "
|
| 23 |
+
results = re.split(re_str, primary_section)
|
| 24 |
+
keywords = ["10 prompts", "bertattack", "checklist", "deepwordbug", "stresstest",
|
| 25 |
+
"textfooler", "textbugger", "translation"]
|
| 26 |
+
|
| 27 |
+
secondary_sections_dict = {}
|
| 28 |
+
for res in results:
|
| 29 |
+
for keyword in keywords:
|
| 30 |
+
if keyword in res.lower():
|
| 31 |
+
secondary_sections_dict[keyword] = res
|
| 32 |
+
break
|
| 33 |
+
|
| 34 |
+
all_sections_dict[dataset] = secondary_sections_dict
|
| 35 |
+
|
| 36 |
+
return all_sections_dict
|
| 37 |
+
# def prompts_understanding(sections_dict):
|
| 38 |
+
# for dataset in sections_dict.keys():
|
| 39 |
+
# # print(dataset)
|
| 40 |
+
# for title in sections_dict[dataset].keys():
|
| 41 |
+
# if title == "10 prompts":
|
| 42 |
+
# prompts = sections_dict[dataset][title].split("\n")
|
| 43 |
+
# num = 0
|
| 44 |
+
# task_prompts_acc = []
|
| 45 |
+
# role_prompts_acc = []
|
| 46 |
+
# for prompt in prompts:
|
| 47 |
+
# if "Acc: " not in prompt:
|
| 48 |
+
# continue
|
| 49 |
+
# else:
|
| 50 |
+
# import re
|
| 51 |
+
# num += 1
|
| 52 |
+
# match = re.search(r'Acc: (\d+\.\d+)%', prompt)
|
| 53 |
+
# if match:
|
| 54 |
+
# number = float(match.group(1))
|
| 55 |
+
# if num <= 10:
|
| 56 |
+
# task_prompts_acc.append(number)
|
| 57 |
+
# else:
|
| 58 |
+
# role_prompts_acc.append(number)
|
| 59 |
+
|
| 60 |
+
# print(task_prompts_acc)
|
| 61 |
+
# print(role_prompts_acc)
|
| 62 |
+
import os
|
| 63 |
+
def list_files(directory):
|
| 64 |
+
files = [os.path.join(directory, d) for d in os.listdir(directory) if not os.path.isdir(os.path.join(directory, d))]
|
| 65 |
+
return files
|
| 66 |
+
|
| 67 |
+
def convert_model_name(attack):
|
| 68 |
+
attack_name = {
|
| 69 |
+
"T5": "t5",
|
| 70 |
+
"UL2": "ul2",
|
| 71 |
+
"Vicuna": "vicuna",
|
| 72 |
+
"ChatGPT": "chatgpt",
|
| 73 |
+
}
|
| 74 |
+
return attack_name[attack]
|
| 75 |
+
|
| 76 |
+
def convert_attack_name(attack):
|
| 77 |
+
attack_name = {
|
| 78 |
+
"BertAttack": "bertattack",
|
| 79 |
+
"CheckList": "checklist",
|
| 80 |
+
"DeepWordBug": "deepwordbug",
|
| 81 |
+
"StressTest": "stresstest",
|
| 82 |
+
"TextFooler": "textfooler",
|
| 83 |
+
"TextBugger": "textbugger",
|
| 84 |
+
"Semantic": "translation",
|
| 85 |
+
}
|
| 86 |
+
return attack_name[attack]
|
| 87 |
+
|
| 88 |
+
def convert_dataset_name(dataset):
|
| 89 |
+
dataset_name = {
|
| 90 |
+
"CoLA": "# cola",
|
| 91 |
+
"MNLI": "# mnli",
|
| 92 |
+
"MRPC": "# mrpc",
|
| 93 |
+
"QNLI": "# qnli",
|
| 94 |
+
"QQP": "# qqp",
|
| 95 |
+
"RTE": "# rte",
|
| 96 |
+
"SST-2": "# sst2",
|
| 97 |
+
"WNLI": "# wnli",
|
| 98 |
+
"MMLU": "# mmlu",
|
| 99 |
+
"SQuAD V2": "# squad_v2",
|
| 100 |
+
"IWSLT": "# iwslt",
|
| 101 |
+
"UN Multi": "# un_multi",
|
| 102 |
+
"Math": "# math",
|
| 103 |
+
"Avg": "Avg",
|
| 104 |
+
}
|
| 105 |
+
return dataset_name[dataset]
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def retrieve(model_name, dataset_name, attack_name, prompt_type):
|
| 109 |
+
model_name = convert_model_name(model_name)
|
| 110 |
+
dataset_name = convert_dataset_name(dataset_name)
|
| 111 |
+
attack_name = convert_attack_name(attack_name)
|
| 112 |
+
|
| 113 |
+
if "zero" in prompt_type:
|
| 114 |
+
shot = "zeroshot"
|
| 115 |
+
else:
|
| 116 |
+
shot = "fewshot"
|
| 117 |
+
|
| 118 |
+
if "task" in prompt_type:
|
| 119 |
+
prompt_type = "task"
|
| 120 |
+
else:
|
| 121 |
+
prompt_type = "role"
|
| 122 |
+
|
| 123 |
+
directory_path = "./db"
|
| 124 |
+
md_dir = os.path.join(directory_path, model_name + "_" + shot + ".md")
|
| 125 |
+
sections_dict = split_markdown_by_title(md_dir)
|
| 126 |
+
|
| 127 |
+
for cur_dataset in sections_dict.keys():
|
| 128 |
+
if cur_dataset == dataset_name:
|
| 129 |
+
dataset_dict = sections_dict[cur_dataset]
|
| 130 |
+
for cur_attack in dataset_dict.keys():
|
| 131 |
+
if cur_attack == attack_name:
|
| 132 |
+
pass
|
| 133 |
+
|
| 134 |
+
if attack_name == "translation":
|
| 135 |
+
results = dataset_dict[attack_name].split("\n")
|
| 136 |
+
|
| 137 |
+
atk_acc = []
|
| 138 |
+
|
| 139 |
+
for result in results:
|
| 140 |
+
if "acc: " not in result:
|
| 141 |
+
continue
|
| 142 |
+
|
| 143 |
+
import re
|
| 144 |
+
|
| 145 |
+
match_atk = re.search(r'acc: (\d+\.\d+)%', result)
|
| 146 |
+
|
| 147 |
+
number_atk = float(match_atk.group(1))
|
| 148 |
+
atk_acc.append(number_atk)
|
| 149 |
+
|
| 150 |
+
sorted_atk_acc = sorted(atk_acc)[:6]
|
| 151 |
+
|
| 152 |
+
elif title in ["bertattack", "checklist", "deepwordbug", "stresstest", "textfooler", "textbugger"]:
|
| 153 |
+
|
| 154 |
+
results = sections_dict[dataset][title].split("Original prompt: ")
|
| 155 |
+
num = 0
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
for result in results:
|
| 159 |
+
if "Attacked prompt: " not in result:
|
| 160 |
+
continue
|
| 161 |
+
num += 1
|
| 162 |
+
import re
|
| 163 |
+
match_origin = re.search(r'Original acc: (\d+\.\d+)%', result)
|
| 164 |
+
match_atk = re.search(r'attacked acc: (\d+\.\d+)%', result)
|
| 165 |
+
if match_origin and match_atk:
|
| 166 |
+
number_origin = float(match_origin.group(1))
|
| 167 |
+
number_atk = float(match_atk.group(1))
|
| 168 |
+
summary[title][dataset].append((number_origin - number_atk)/number_origin)
|
| 169 |
+
summary[title]["Avg"].append((number_origin - number_atk)/number_origin)
|
| 170 |
+
|
| 171 |
+
# print(model_shot, dataset, title, len(summary[attack][dataset]), num)
|
| 172 |
+
|
| 173 |
+
# for atk in summary.keys():
|
| 174 |
+
# for dataset in summary[atk].keys():
|
| 175 |
+
# # if atk == "translation":
|
| 176 |
+
# print(atk, dataset, len(summary[atk][dataset]))
|
| 177 |
+
# # print(summary[atk][dataset][:10])
|
| 178 |
+
|
| 179 |
+
output_dict = {}
|
| 180 |
+
|
| 181 |
+
sorted_atk_name = ["TextBugger", "DeepWordBug", "TextFooler", "BertAttack", "CheckList", "StressTest", "Semantic"]
|
| 182 |
+
sorted_dataset_name = ["SST-2", "CoLA", "QQP", "MRPC", "MNLI", "QNLI", "RTE", "WNLI", "MMLU", "SQuAD V2", "IWSLT", "UN Multi", "Math"]
|
| 183 |
+
|
| 184 |
+
for atk in sorted_atk_name:
|
| 185 |
+
output_dict[atk] = {}
|
| 186 |
+
for dataset in sorted_dataset_name:
|
| 187 |
+
output_dict[atk][dataset] = ""
|
| 188 |
+
|
| 189 |
+
for sorted_atk in sorted_atk_name:
|
| 190 |
+
for attack, dataset_drop_rates in summary.items():
|
| 191 |
+
# attack = convert_attack_name(attack)
|
| 192 |
+
if convert_attack_name(attack) == sorted_atk:
|
| 193 |
+
for sorted_dataset in sorted_dataset_name:
|
| 194 |
+
for dataset, drop_rates in dataset_drop_rates.items():
|
| 195 |
+
if convert_dataset_name(dataset) == sorted_dataset:
|
| 196 |
+
if len(drop_rates) > 0:
|
| 197 |
+
output_dict[sorted_atk][sorted_dataset] = "{:.2f}".format(sum(drop_rates)/len(drop_rates)) + "\scriptsize{$\pm$" + "{:.2f}".format(np.std(drop_rates)) + "}"
|
| 198 |
+
else:
|
| 199 |
+
output_dict[sorted_atk][sorted_dataset] = "-"
|
| 200 |
+
|
| 201 |
+
total_drop_rate = summary[attack]["Avg"]
|
| 202 |
+
output_dict[sorted_atk]["Avg"] = "{:.2f}".format(np.mean(total_drop_rate)) + "\scriptsize{$\pm$" + "{:.2f}".format(np.std(total_drop_rate)) + "}"
|
| 203 |
+
|