Spaces:
Runtime error
Runtime error
added u7 evaluation
Browse files
app.py
CHANGED
|
@@ -5,6 +5,7 @@ import requests
|
|
| 5 |
import re
|
| 6 |
import pandas as pd
|
| 7 |
from huggingface_hub import ModelCard
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
def pass_emoji(passed):
|
|
@@ -15,6 +16,9 @@ def pass_emoji(passed):
|
|
| 15 |
return passed
|
| 16 |
|
| 17 |
api = HfApi()
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
def get_user_models(hf_username, task):
|
|
@@ -37,9 +41,9 @@ def get_user_models(hf_username, task):
|
|
| 37 |
|
| 38 |
dataset_specific_models = []
|
| 39 |
|
| 40 |
-
if dataset == "":
|
| 41 |
return user_model_ids
|
| 42 |
-
else:
|
| 43 |
for model in user_model_ids:
|
| 44 |
meta = get_metadata(model)
|
| 45 |
if meta is None:
|
|
@@ -47,11 +51,10 @@ def get_user_models(hf_username, task):
|
|
| 47 |
try:
|
| 48 |
if meta["datasets"] == [dataset]:
|
| 49 |
dataset_specific_models.append(model)
|
| 50 |
-
except:
|
| 51 |
continue
|
| 52 |
return dataset_specific_models
|
| 53 |
|
| 54 |
-
|
| 55 |
def calculate_best_result(user_models, task):
|
| 56 |
"""
|
| 57 |
Calculate the best results of a unit for a given task
|
|
@@ -155,9 +158,9 @@ def certification(hf_username):
|
|
| 155 |
"passed_": False
|
| 156 |
},
|
| 157 |
{
|
| 158 |
-
"unit": "Unit 7:
|
| 159 |
-
"task": "
|
| 160 |
-
"baseline_metric": 0
|
| 161 |
"best_result": 0,
|
| 162 |
"best_model_id": "",
|
| 163 |
"passed_": False
|
|
@@ -191,13 +194,19 @@ def certification(hf_username):
|
|
| 191 |
case "text-to-speech":
|
| 192 |
try:
|
| 193 |
user_tts_models = get_user_models(hf_username, task = "text-to-speech")
|
| 194 |
-
if user_tts_models:
|
| 195 |
unit["best_result"] = 0
|
| 196 |
unit["best_model_id"] = user_tts_models[0]
|
| 197 |
unit["passed_"] = True
|
| 198 |
unit["passed"] = pass_emoji(unit["passed_"])
|
| 199 |
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition")
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
case _:
|
| 202 |
print("Unknown task")
|
| 203 |
|
|
@@ -205,23 +214,25 @@ def certification(hf_username):
|
|
| 205 |
|
| 206 |
df = pd.DataFrame(results_certification)
|
| 207 |
df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']]
|
| 208 |
-
return df
|
| 209 |
-
|
| 210 |
with gr.Blocks() as demo:
|
| 211 |
gr.Markdown(f"""
|
| 212 |
# π Check your progress in the Audio Course π
|
| 213 |
-
|
| 214 |
- To get a certificate of completion, you must **pass 3 out of 4 assignments before July 31st 2023**.
|
| 215 |
- To get an honors certificate, you must **pass 4 out of 4 assignments before July 31st 2023**.
|
| 216 |
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
|
|
|
|
|
|
| 220 |
""")
|
| 221 |
-
|
| 222 |
hf_username = gr.Textbox(placeholder="MariaK", label="Your Hugging Face Username")
|
| 223 |
check_progress_button = gr.Button(value="Check my progress")
|
| 224 |
-
output = gr.components.Dataframe(value=certification(hf_username))
|
| 225 |
check_progress_button.click(fn=certification, inputs=hf_username, outputs=output)
|
| 226 |
|
| 227 |
demo.launch()
|
|
|
|
| 5 |
import re
|
| 6 |
import pandas as pd
|
| 7 |
from huggingface_hub import ModelCard
|
| 8 |
+
import os
|
| 9 |
|
| 10 |
|
| 11 |
def pass_emoji(passed):
|
|
|
|
| 16 |
return passed
|
| 17 |
|
| 18 |
api = HfApi()
|
| 19 |
+
USERNAMES_DATASET_ID = "huggingface-course/audio-course-u7-hands-on"
|
| 20 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 21 |
+
U7_USERNAMES = hf_hub_download(USERNAMES_DATASET_ID, repo_type = "dataset", filename="usernames.csv", token=HF_TOKEN)
|
| 22 |
|
| 23 |
|
| 24 |
def get_user_models(hf_username, task):
|
|
|
|
| 41 |
|
| 42 |
dataset_specific_models = []
|
| 43 |
|
| 44 |
+
if dataset == "":
|
| 45 |
return user_model_ids
|
| 46 |
+
else:
|
| 47 |
for model in user_model_ids:
|
| 48 |
meta = get_metadata(model)
|
| 49 |
if meta is None:
|
|
|
|
| 51 |
try:
|
| 52 |
if meta["datasets"] == [dataset]:
|
| 53 |
dataset_specific_models.append(model)
|
| 54 |
+
except:
|
| 55 |
continue
|
| 56 |
return dataset_specific_models
|
| 57 |
|
|
|
|
| 58 |
def calculate_best_result(user_models, task):
|
| 59 |
"""
|
| 60 |
Calculate the best results of a unit for a given task
|
|
|
|
| 158 |
"passed_": False
|
| 159 |
},
|
| 160 |
{
|
| 161 |
+
"unit": "Unit 7: Audio applications",
|
| 162 |
+
"task": "demo",
|
| 163 |
+
"baseline_metric": 0,
|
| 164 |
"best_result": 0,
|
| 165 |
"best_model_id": "",
|
| 166 |
"passed_": False
|
|
|
|
| 194 |
case "text-to-speech":
|
| 195 |
try:
|
| 196 |
user_tts_models = get_user_models(hf_username, task = "text-to-speech")
|
| 197 |
+
if user_tts_models:
|
| 198 |
unit["best_result"] = 0
|
| 199 |
unit["best_model_id"] = user_tts_models[0]
|
| 200 |
unit["passed_"] = True
|
| 201 |
unit["passed"] = pass_emoji(unit["passed_"])
|
| 202 |
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition")
|
| 203 |
+
case "demo":
|
| 204 |
+
u7_users = pd.read_csv(U7_USERNAMES)
|
| 205 |
+
if hf_username in u7_users['username']:
|
| 206 |
+
unit["best_result"] = 0
|
| 207 |
+
unit["best_model_id"] = "Demo check passed, no model id"
|
| 208 |
+
unit["passed_"] = True
|
| 209 |
+
unit["passed"] = pass_emoji(unit["passed_"])
|
| 210 |
case _:
|
| 211 |
print("Unknown task")
|
| 212 |
|
|
|
|
| 214 |
|
| 215 |
df = pd.DataFrame(results_certification)
|
| 216 |
df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']]
|
| 217 |
+
return df
|
| 218 |
+
|
| 219 |
with gr.Blocks() as demo:
|
| 220 |
gr.Markdown(f"""
|
| 221 |
# π Check your progress in the Audio Course π
|
| 222 |
+
|
| 223 |
- To get a certificate of completion, you must **pass 3 out of 4 assignments before July 31st 2023**.
|
| 224 |
- To get an honors certificate, you must **pass 4 out of 4 assignments before July 31st 2023**.
|
| 225 |
|
| 226 |
+
For the assignments where you have to train a model, your model's metric should be equal to or better than the baseline metric.
|
| 227 |
+
For the Unit 7 assignment, first, check your demo with Unit 7 assessment Space: https://huggingface.co/spaces/huggingface-course/audio-course-u7-assessment
|
| 228 |
+
|
| 229 |
+
Make sure that you have uploaded your model(s) to Hub, and that your Unit 7 demo is public.
|
| 230 |
+
To check your progress, type your Hugging Face Username here (in my case MariaK)
|
| 231 |
""")
|
| 232 |
+
|
| 233 |
hf_username = gr.Textbox(placeholder="MariaK", label="Your Hugging Face Username")
|
| 234 |
check_progress_button = gr.Button(value="Check my progress")
|
| 235 |
+
output = gr.components.Dataframe(value=certification(hf_username))
|
| 236 |
check_progress_button.click(fn=certification, inputs=hf_username, outputs=output)
|
| 237 |
|
| 238 |
demo.launch()
|