Spaces:
Runtime error
Runtime error
Updates for Audio course
Browse files
app.py
CHANGED
|
@@ -1,44 +1,45 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import HfApi, hf_hub_download
|
| 3 |
from huggingface_hub.repocard import metadata_load
|
| 4 |
-
|
|
|
|
| 5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
api = HfApi()
|
| 10 |
|
| 11 |
-
def
|
| 12 |
"""
|
| 13 |
-
List the
|
| 14 |
-
from user given environment and lib
|
| 15 |
:param hf_username: User HF username
|
| 16 |
-
:param env_tag: Environment tag
|
| 17 |
-
:param lib_tag: Library tag
|
| 18 |
"""
|
| 19 |
-
api = HfApi()
|
| 20 |
-
models = api.list_models(author=hf_username, filter=["reinforcement-learning", env_tag, lib_tag])
|
| 21 |
-
|
| 22 |
-
user_model_ids = [x.modelId for x in models]
|
| 23 |
-
return user_model_ids
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def get_user_sf_models(hf_username, env_tag, lib_tag):
|
| 27 |
-
api = HfApi()
|
| 28 |
-
models_sf = []
|
| 29 |
-
models = api.list_models(author=hf_username, filter=["reinforcement-learning", lib_tag])
|
| 30 |
|
|
|
|
| 31 |
user_model_ids = [x.modelId for x in models]
|
|
|
|
| 32 |
|
| 33 |
for model in user_model_ids:
|
| 34 |
meta = get_metadata(model)
|
| 35 |
if meta is None:
|
| 36 |
continue
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
return models_sf
|
| 42 |
|
| 43 |
|
| 44 |
def get_metadata(model_id):
|
|
@@ -54,232 +55,125 @@ def get_metadata(model_id):
|
|
| 54 |
return None
|
| 55 |
|
| 56 |
|
| 57 |
-
def
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
|
| 70 |
|
| 71 |
-
def
|
| 72 |
"""
|
| 73 |
-
|
| 74 |
-
:param
|
| 75 |
"""
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
if accuracy != None:
|
| 79 |
-
accuracy = str(accuracy)
|
| 80 |
-
parsed = accuracy.split(' +/- ')
|
| 81 |
-
if len(parsed)>1:
|
| 82 |
-
mean_reward = float(parsed[0])
|
| 83 |
-
std_reward = float(parsed[1])
|
| 84 |
-
elif len(parsed)==1: #only mean reward
|
| 85 |
-
mean_reward = float(parsed[0])
|
| 86 |
-
std_reward = float(0)
|
| 87 |
-
else:
|
| 88 |
-
mean_reward = float(default_std)
|
| 89 |
-
std_reward = float(default_reward)
|
| 90 |
-
else:
|
| 91 |
-
mean_reward = float(default_std)
|
| 92 |
-
std_reward = float(default_reward)
|
| 93 |
-
|
| 94 |
-
return mean_reward, std_reward
|
| 95 |
|
| 96 |
-
|
|
|
|
| 97 |
"""
|
| 98 |
Calculate the best results of a unit
|
| 99 |
-
best_result = mean_reward - std_reward
|
| 100 |
:param user_model_ids: RL models of a user
|
| 101 |
"""
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
| 104 |
for model in user_model_ids:
|
| 105 |
meta = get_metadata(model)
|
| 106 |
if meta is None:
|
| 107 |
continue
|
| 108 |
-
accuracy = parse_metrics_accuracy(
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
best_result = result
|
| 113 |
-
best_model_id = model
|
| 114 |
|
| 115 |
-
return best_result,
|
| 116 |
|
| 117 |
-
def check_if_passed(model):
|
| 118 |
-
"""
|
| 119 |
-
Check if result >= baseline
|
| 120 |
-
to know if you pass
|
| 121 |
-
:param model: user model
|
| 122 |
-
"""
|
| 123 |
-
if model["best_result"] >= model["min_result"]:
|
| 124 |
-
model["passed_"] = True
|
| 125 |
|
| 126 |
def certification(hf_username):
|
| 127 |
results_certification = [
|
| 128 |
{
|
| 129 |
-
"unit": "Unit
|
| 130 |
-
"
|
| 131 |
-
"
|
| 132 |
-
"min_result": 200,
|
| 133 |
"best_result": 0,
|
| 134 |
"best_model_id": "",
|
| 135 |
"passed_": False
|
| 136 |
},
|
| 137 |
{
|
| 138 |
-
"unit": "Unit
|
| 139 |
-
"
|
| 140 |
-
"
|
| 141 |
-
"min_result": 4,
|
| 142 |
"best_result": 0,
|
| 143 |
"best_model_id": "",
|
| 144 |
"passed_": False
|
| 145 |
},
|
| 146 |
{
|
| 147 |
-
"unit": "Unit
|
| 148 |
-
"
|
| 149 |
-
"
|
| 150 |
-
"min_result": 200,
|
| 151 |
"best_result": 0,
|
| 152 |
"best_model_id": "",
|
| 153 |
"passed_": False
|
| 154 |
},
|
| 155 |
{
|
| 156 |
-
"unit": "Unit
|
| 157 |
-
"
|
| 158 |
-
"
|
| 159 |
-
"min_result": 350,
|
| 160 |
"best_result": 0,
|
| 161 |
"best_model_id": "",
|
| 162 |
"passed_": False
|
| 163 |
},
|
| 164 |
-
{
|
| 165 |
-
"unit": "Unit 4",
|
| 166 |
-
"env": "Pixelcopter-PLE-v0",
|
| 167 |
-
"library": "reinforce",
|
| 168 |
-
"min_result": 5,
|
| 169 |
-
"best_result": 0,
|
| 170 |
-
"best_model_id": "",
|
| 171 |
-
"passed_": False
|
| 172 |
-
},
|
| 173 |
-
{
|
| 174 |
-
"unit": "Unit 5",
|
| 175 |
-
"env": "ML-Agents-SnowballTarget",
|
| 176 |
-
"library": "ml-agents",
|
| 177 |
-
"min_result": -100,
|
| 178 |
-
"best_result": 0,
|
| 179 |
-
"best_model_id": "",
|
| 180 |
-
"passed_": False
|
| 181 |
-
},
|
| 182 |
-
{
|
| 183 |
-
"unit": "Unit 5",
|
| 184 |
-
"env": "ML-Agents-Pyramids",
|
| 185 |
-
"library": "ml-agents",
|
| 186 |
-
"min_result": -100,
|
| 187 |
-
"best_result": 0,
|
| 188 |
-
"best_model_id": "",
|
| 189 |
-
"passed_": False
|
| 190 |
-
},
|
| 191 |
-
{
|
| 192 |
-
"unit": "Unit 6",
|
| 193 |
-
"env": "AntBulletEnv-v0",
|
| 194 |
-
"library": "stable-baselines3",
|
| 195 |
-
"min_result": 650,
|
| 196 |
-
"best_result": 0,
|
| 197 |
-
"best_model_id": "",
|
| 198 |
-
"passed_": False
|
| 199 |
-
},
|
| 200 |
-
{
|
| 201 |
-
"unit": "Unit 6",
|
| 202 |
-
"env": "PandaReachDense-v2",
|
| 203 |
-
"library": "stable-baselines3",
|
| 204 |
-
"min_result": -3.5,
|
| 205 |
-
"best_result": 0,
|
| 206 |
-
"best_model_id": "",
|
| 207 |
-
"passed_": False
|
| 208 |
-
},
|
| 209 |
-
{
|
| 210 |
-
"unit": "Unit 7",
|
| 211 |
-
"env": "ML-Agents-SoccerTwos",
|
| 212 |
-
"library": "ml-agents",
|
| 213 |
-
"min_result": -100,
|
| 214 |
-
"best_result": 0,
|
| 215 |
-
"best_model_id": "",
|
| 216 |
-
"passed_": False
|
| 217 |
-
},
|
| 218 |
-
{
|
| 219 |
-
"unit": "Unit 8 PI",
|
| 220 |
-
"env": "LunarLander-v2",
|
| 221 |
-
"library": "deep-rl-course",
|
| 222 |
-
"min_result": -500,
|
| 223 |
-
"best_result": 0,
|
| 224 |
-
"best_model_id": "",
|
| 225 |
-
"passed_": False
|
| 226 |
-
},
|
| 227 |
-
{
|
| 228 |
-
"unit": "Unit 8 PII",
|
| 229 |
-
"env": "doom_health_gathering_supreme",
|
| 230 |
-
"library": "sample-factory",
|
| 231 |
-
"min_result": 5,
|
| 232 |
-
"best_result": 0,
|
| 233 |
-
"best_model_id": "",
|
| 234 |
-
"passed_": False
|
| 235 |
-
},
|
| 236 |
]
|
|
|
|
| 237 |
for unit in results_certification:
|
| 238 |
-
if unit["
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
else:
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
# Calculate the best result and get the best_model_id
|
| 247 |
-
best_result, best_model_id = calculate_best_result(user_models)
|
| 248 |
-
|
| 249 |
-
# Save best_result and best_model_id
|
| 250 |
-
unit["best_result"] = best_result
|
| 251 |
-
unit["best_model_id"] = make_clickable_model(best_model_id)
|
| 252 |
-
|
| 253 |
-
# Based on best_result do we pass the unit?
|
| 254 |
-
check_if_passed(unit)
|
| 255 |
-
unit["passed"] = pass_emoji(unit["passed_"])
|
| 256 |
|
| 257 |
print(results_certification)
|
| 258 |
|
| 259 |
df = pd.DataFrame(results_certification)
|
| 260 |
-
df = df[['passed', 'unit', '
|
| 261 |
return df
|
| 262 |
|
| 263 |
|
| 264 |
with gr.Blocks() as demo:
|
| 265 |
gr.Markdown(f"""
|
| 266 |
-
# 🏆 Check your progress in the
|
| 267 |
You can check your progress here.
|
| 268 |
|
| 269 |
-
- To get a certificate of completion, you must **pass
|
| 270 |
-
- To get an honors certificate, you must **pass
|
| 271 |
|
| 272 |
-
To pass an assignment your model
|
| 273 |
|
| 274 |
-
**When min_result = -100 it means that you just need to push a model to pass this hands-on
|
| 275 |
|
| 276 |
-
Just type your Hugging Face Username 🤗 (in my case
|
| 277 |
""")
|
| 278 |
|
| 279 |
-
hf_username = gr.Textbox(placeholder="
|
| 280 |
-
#email = gr.Textbox(placeholder="thomas.simonini@huggingface.co", label="Your Email (to receive your certificate)")
|
| 281 |
check_progress_button = gr.Button(value="Check my progress")
|
| 282 |
-
output = gr.components.Dataframe(value=
|
| 283 |
check_progress_button.click(fn=certification, inputs=hf_username, outputs=output)
|
| 284 |
|
| 285 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import HfApi, hf_hub_download
|
| 3 |
from huggingface_hub.repocard import metadata_load
|
| 4 |
+
import requests
|
| 5 |
+
import re
|
| 6 |
import pandas as pd
|
| 7 |
+
from huggingface_hub import ModelCard
|
| 8 |
+
|
| 9 |
+
def make_clickable_model(model_name):
|
| 10 |
+
# remove user from model name
|
| 11 |
+
model_name_show = ' '.join(model_name.split('/')[1:])
|
| 12 |
|
| 13 |
+
link = "https://huggingface.co/" + model_name
|
| 14 |
+
return f'<a target="_blank" href="{link}">{model_name_show}</a>'
|
| 15 |
+
|
| 16 |
+
def pass_emoji(passed):
|
| 17 |
+
if passed is True:
|
| 18 |
+
passed = "✅"
|
| 19 |
+
else:
|
| 20 |
+
passed = "❌"
|
| 21 |
+
return passed
|
| 22 |
|
| 23 |
api = HfApi()
|
| 24 |
|
| 25 |
+
def get_user_audio_classification_models(hf_username):
|
| 26 |
"""
|
| 27 |
+
List the user's Audio Classification models
|
|
|
|
| 28 |
:param hf_username: User HF username
|
|
|
|
|
|
|
| 29 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
models = api.list_models(author=hf_username, filter=["audio-classification"])
|
| 32 |
user_model_ids = [x.modelId for x in models]
|
| 33 |
+
models_gtzan = []
|
| 34 |
|
| 35 |
for model in user_model_ids:
|
| 36 |
meta = get_metadata(model)
|
| 37 |
if meta is None:
|
| 38 |
continue
|
| 39 |
+
if meta["datasets"] == ['marsyas/gtzan']:
|
| 40 |
+
models_gtzan.append(model)
|
| 41 |
+
|
| 42 |
+
return models_gtzan
|
|
|
|
| 43 |
|
| 44 |
|
| 45 |
def get_metadata(model_id):
|
|
|
|
| 55 |
return None
|
| 56 |
|
| 57 |
|
| 58 |
+
def extract_accuracy(model_card_content):
|
| 59 |
+
"""
|
| 60 |
+
Extract the accuracy value from the models' model card
|
| 61 |
+
:param model_card_content: model card content
|
| 62 |
+
"""
|
| 63 |
+
accuracy_pattern = r"Accuracy: (\d+\.\d+)"
|
| 64 |
+
match = re.search(accuracy_pattern, model_card_content)
|
| 65 |
+
if match:
|
| 66 |
+
accuracy = match.group(1)
|
| 67 |
+
return float(accuracy)
|
| 68 |
+
else:
|
| 69 |
+
return None
|
| 70 |
|
| 71 |
|
| 72 |
+
def parse_metrics_accuracy(model_id):
|
| 73 |
"""
|
| 74 |
+
Get model card and parse it
|
| 75 |
+
:param model_id: model id
|
| 76 |
"""
|
| 77 |
+
card = ModelCard.load(model_id)
|
| 78 |
+
return extract_accuracy(card.content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
|
| 81 |
+
def calculate_best_acc_result(user_model_ids):
|
| 82 |
"""
|
| 83 |
Calculate the best results of a unit
|
|
|
|
| 84 |
:param user_model_ids: RL models of a user
|
| 85 |
"""
|
| 86 |
+
|
| 87 |
+
best_result = -100
|
| 88 |
+
best_model = ""
|
| 89 |
+
|
| 90 |
for model in user_model_ids:
|
| 91 |
meta = get_metadata(model)
|
| 92 |
if meta is None:
|
| 93 |
continue
|
| 94 |
+
accuracy = parse_metrics_accuracy(model)
|
| 95 |
+
if accuracy > best_result:
|
| 96 |
+
best_result = accuracy
|
| 97 |
+
best_model = meta['model-index'][0]["name"]
|
|
|
|
|
|
|
| 98 |
|
| 99 |
+
return best_result, best_model
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
def certification(hf_username):
|
| 103 |
results_certification = [
|
| 104 |
{
|
| 105 |
+
"unit": "Unit 4: Audio Classification",
|
| 106 |
+
"task": "audio-classification",
|
| 107 |
+
"baseline_metric": 0.87,
|
|
|
|
| 108 |
"best_result": 0,
|
| 109 |
"best_model_id": "",
|
| 110 |
"passed_": False
|
| 111 |
},
|
| 112 |
{
|
| 113 |
+
"unit": "Unit 5: TBD",
|
| 114 |
+
"task": "TBD",
|
| 115 |
+
"baseline_metric": 0.99,
|
|
|
|
| 116 |
"best_result": 0,
|
| 117 |
"best_model_id": "",
|
| 118 |
"passed_": False
|
| 119 |
},
|
| 120 |
{
|
| 121 |
+
"unit": "Unit 6: TBD",
|
| 122 |
+
"task": "TBD",
|
| 123 |
+
"baseline_metric": 0.99,
|
|
|
|
| 124 |
"best_result": 0,
|
| 125 |
"best_model_id": "",
|
| 126 |
"passed_": False
|
| 127 |
},
|
| 128 |
{
|
| 129 |
+
"unit": "Unit 7: TBD",
|
| 130 |
+
"task": "TBD",
|
| 131 |
+
"baseline_metric": 0.99,
|
|
|
|
| 132 |
"best_result": 0,
|
| 133 |
"best_model_id": "",
|
| 134 |
"passed_": False
|
| 135 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
]
|
| 137 |
+
|
| 138 |
for unit in results_certification:
|
| 139 |
+
if unit["task"] == "audio-classification":
|
| 140 |
+
user_models = get_user_audio_classification_models(hf_username)
|
| 141 |
+
best_result, best_model_id = calculate_best_acc_result(user_models)
|
| 142 |
+
unit["best_result"] = best_result
|
| 143 |
+
unit["best_model_id"] = make_clickable_model(best_model_id)
|
| 144 |
+
if unit["best_result"] >= unit["baseline_metric"]:
|
| 145 |
+
unit["passed_"] = True
|
| 146 |
+
unit["passed"] = pass_emoji(unit["passed_"])
|
| 147 |
else:
|
| 148 |
+
# TBD for other units
|
| 149 |
+
unit["passed"] = pass_emoji(unit["passed_"])
|
| 150 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
print(results_certification)
|
| 153 |
|
| 154 |
df = pd.DataFrame(results_certification)
|
| 155 |
+
df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']]
|
| 156 |
return df
|
| 157 |
|
| 158 |
|
| 159 |
with gr.Blocks() as demo:
|
| 160 |
gr.Markdown(f"""
|
| 161 |
+
# 🏆 Check your progress in the Audio Course 🏆
|
| 162 |
You can check your progress here.
|
| 163 |
|
| 164 |
+
- To get a certificate of completion, you must **pass 3 out of 4 assignments before July 31st 2023**.
|
| 165 |
+
- To get an honors certificate, you must **pass 4 out of 4 assignments before July 31st 2023**.
|
| 166 |
|
| 167 |
+
To pass an assignment, your model's metric should be equal or higher than the baseline metric
|
| 168 |
|
| 169 |
+
**When min_result = -100 it means that you just need to push a model to pass this hands-on.**
|
| 170 |
|
| 171 |
+
Just type your Hugging Face Username 🤗 (in my case MariaK)
|
| 172 |
""")
|
| 173 |
|
| 174 |
+
hf_username = gr.Textbox(placeholder="MariaK", label="Your Hugging Face Username")
|
|
|
|
| 175 |
check_progress_button = gr.Button(value="Check my progress")
|
| 176 |
+
output = gr.components.Dataframe(value=certification(hf_username))
|
| 177 |
check_progress_button.click(fn=certification, inputs=hf_username, outputs=output)
|
| 178 |
|
| 179 |
demo.launch()
|