Spaces:
Runtime error
Runtime error
Updated with evaluation for ASR hands-on
Browse files
app.py
CHANGED
|
@@ -17,26 +17,66 @@ def pass_emoji(passed):
|
|
| 17 |
api = HfApi()
|
| 18 |
|
| 19 |
|
| 20 |
-
def
|
| 21 |
"""
|
| 22 |
-
List the user's
|
| 23 |
:param hf_username: User HF username
|
| 24 |
"""
|
| 25 |
-
|
| 26 |
-
models = api.list_models(author=hf_username, filter=["audio-classification"])
|
| 27 |
user_model_ids = [x.modelId for x in models]
|
| 28 |
-
models_gtzan = []
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
for model in user_model_ids:
|
| 31 |
meta = get_metadata(model)
|
| 32 |
if meta is None:
|
| 33 |
continue
|
| 34 |
try:
|
| 35 |
-
if meta["datasets"] == [
|
| 36 |
-
|
| 37 |
except: continue
|
| 38 |
-
return
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
def get_metadata(model_id):
|
| 42 |
"""
|
|
@@ -51,48 +91,34 @@ def get_metadata(model_id):
|
|
| 51 |
return None
|
| 52 |
|
| 53 |
|
| 54 |
-
def
|
| 55 |
"""
|
| 56 |
-
Extract the
|
| 57 |
:param model_card_content: model card content
|
| 58 |
"""
|
| 59 |
accuracy_pattern = r"Accuracy: (\d+\.\d+)"
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
if match:
|
| 62 |
-
|
| 63 |
-
return float(
|
| 64 |
else:
|
| 65 |
-
return None
|
| 66 |
|
| 67 |
|
| 68 |
-
def
|
| 69 |
"""
|
| 70 |
Get model card and parse it
|
| 71 |
:param model_id: model id
|
| 72 |
"""
|
| 73 |
-
card = ModelCard.load(
|
| 74 |
-
return
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
def calculate_best_acc_result(user_model_ids):
|
| 78 |
-
"""
|
| 79 |
-
Calculate the best results of a unit
|
| 80 |
-
:param user_model_ids: RL models of a user
|
| 81 |
-
"""
|
| 82 |
-
|
| 83 |
-
best_result = -100
|
| 84 |
-
best_model = ""
|
| 85 |
-
|
| 86 |
-
for model in user_model_ids:
|
| 87 |
-
meta = get_metadata(model)
|
| 88 |
-
if meta is None:
|
| 89 |
-
continue
|
| 90 |
-
accuracy = parse_metrics_accuracy(model)
|
| 91 |
-
if accuracy > best_result:
|
| 92 |
-
best_result = accuracy
|
| 93 |
-
best_model = meta['model-index'][0]["name"]
|
| 94 |
-
|
| 95 |
-
return best_result, best_model
|
| 96 |
|
| 97 |
|
| 98 |
def certification(hf_username):
|
|
@@ -106,9 +132,9 @@ def certification(hf_username):
|
|
| 106 |
"passed_": False
|
| 107 |
},
|
| 108 |
{
|
| 109 |
-
"unit": "Unit 5:
|
| 110 |
-
"task": "
|
| 111 |
-
"baseline_metric": 0.
|
| 112 |
"best_result": 0,
|
| 113 |
"best_model_id": "",
|
| 114 |
"passed_": False
|
|
@@ -133,17 +159,32 @@ def certification(hf_username):
|
|
| 133 |
|
| 134 |
for unit in results_certification:
|
| 135 |
unit["passed"] = pass_emoji(unit["passed_"])
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
print(results_certification)
|
| 149 |
|
|
@@ -151,7 +192,6 @@ def certification(hf_username):
|
|
| 151 |
df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']]
|
| 152 |
return df
|
| 153 |
|
| 154 |
-
|
| 155 |
with gr.Blocks() as demo:
|
| 156 |
gr.Markdown(f"""
|
| 157 |
# π Check your progress in the Audio Course π
|
|
|
|
| 17 |
api = HfApi()
|
| 18 |
|
| 19 |
|
| 20 |
+
def get_user_models(hf_username, task):
|
| 21 |
"""
|
| 22 |
+
List the user's models for a given task
|
| 23 |
:param hf_username: User HF username
|
| 24 |
"""
|
| 25 |
+
models = api.list_models(author=hf_username, filter=[task])
|
|
|
|
| 26 |
user_model_ids = [x.modelId for x in models]
|
|
|
|
| 27 |
|
| 28 |
+
match task:
|
| 29 |
+
case "audio-classification":
|
| 30 |
+
dataset = 'marsyas/gtzan'
|
| 31 |
+
case "automatic-speech-recognition":
|
| 32 |
+
dataset = 'PolyAI/minds14'
|
| 33 |
+
case _:
|
| 34 |
+
print("Unsupported task")
|
| 35 |
+
|
| 36 |
+
dataset_specific_models = []
|
| 37 |
+
|
| 38 |
for model in user_model_ids:
|
| 39 |
meta = get_metadata(model)
|
| 40 |
if meta is None:
|
| 41 |
continue
|
| 42 |
try:
|
| 43 |
+
if meta["datasets"] == [dataset]:
|
| 44 |
+
dataset_specific_models.append(model)
|
| 45 |
except: continue
|
| 46 |
+
return dataset_specific_models
|
| 47 |
|
| 48 |
+
def calculate_best_result(user_models, task):
|
| 49 |
+
"""
|
| 50 |
+
Calculate the best results of a unit for a given task
|
| 51 |
+
:param user_model_ids: models of a user
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
best_model = ""
|
| 55 |
+
|
| 56 |
+
if task == "audio-classification":
|
| 57 |
+
best_result = -100
|
| 58 |
+
larger_is_better = True
|
| 59 |
+
elif task == "automatic-speech-recognition":
|
| 60 |
+
best_result = 100
|
| 61 |
+
larger_is_better = False
|
| 62 |
+
|
| 63 |
+
for model in user_models:
|
| 64 |
+
meta = get_metadata(model)
|
| 65 |
+
if meta is None:
|
| 66 |
+
continue
|
| 67 |
+
metric = parse_metrics(model, task)
|
| 68 |
+
|
| 69 |
+
if larger_is_better:
|
| 70 |
+
if metric > best_result:
|
| 71 |
+
best_result = metric
|
| 72 |
+
best_model = meta['model-index'][0]["name"]
|
| 73 |
+
else:
|
| 74 |
+
if metric < best_result:
|
| 75 |
+
best_result = metric
|
| 76 |
+
best_model = meta['model-index'][0]["name"]
|
| 77 |
+
|
| 78 |
+
return best_result, best_model
|
| 79 |
+
|
| 80 |
|
| 81 |
def get_metadata(model_id):
|
| 82 |
"""
|
|
|
|
| 91 |
return None
|
| 92 |
|
| 93 |
|
| 94 |
+
def extract_metric(model_card_content, task):
|
| 95 |
"""
|
| 96 |
+
Extract the metric value from the models' model card
|
| 97 |
:param model_card_content: model card content
|
| 98 |
"""
|
| 99 |
accuracy_pattern = r"Accuracy: (\d+\.\d+)"
|
| 100 |
+
wer_pattern = r"Wer: (\d+\.\d+)"
|
| 101 |
+
|
| 102 |
+
if task == "audio-classification":
|
| 103 |
+
pattern = accuracy_pattern
|
| 104 |
+
elif task == "automatic-speech-recognition":
|
| 105 |
+
pattern = wer_pattern
|
| 106 |
+
|
| 107 |
+
match = re.search(pattern, model_card_content)
|
| 108 |
if match:
|
| 109 |
+
metric = match.group(1)
|
| 110 |
+
return float(metric)
|
| 111 |
else:
|
| 112 |
+
return None
|
| 113 |
|
| 114 |
|
| 115 |
+
def parse_metrics(model, task):
|
| 116 |
"""
|
| 117 |
Get model card and parse it
|
| 118 |
:param model_id: model id
|
| 119 |
"""
|
| 120 |
+
card = ModelCard.load(model)
|
| 121 |
+
return extract_metric(card.content, task)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
|
| 124 |
def certification(hf_username):
|
|
|
|
| 132 |
"passed_": False
|
| 133 |
},
|
| 134 |
{
|
| 135 |
+
"unit": "Unit 5: Automatic Speech Recognition",
|
| 136 |
+
"task": "automatic-speech-recognition",
|
| 137 |
+
"baseline_metric": 0.37,
|
| 138 |
"best_result": 0,
|
| 139 |
"best_model_id": "",
|
| 140 |
"passed_": False
|
|
|
|
| 159 |
|
| 160 |
for unit in results_certification:
|
| 161 |
unit["passed"] = pass_emoji(unit["passed_"])
|
| 162 |
+
|
| 163 |
+
match unit["task"]:
|
| 164 |
+
case "audio-classification":
|
| 165 |
+
try:
|
| 166 |
+
user_ac_models = get_user_models(hf_username, task = "audio-classification")
|
| 167 |
+
best_result, best_model_id = calculate_best_result(user_ac_models, task = "audio-classification")
|
| 168 |
+
unit["best_result"] = best_result
|
| 169 |
+
unit["best_model_id"] = best_model_id
|
| 170 |
+
if unit["best_result"] >= unit["baseline_metric"]:
|
| 171 |
+
unit["passed_"] = True
|
| 172 |
+
unit["passed"] = pass_emoji(unit["passed_"])
|
| 173 |
+
except: print("Either no relevant models found, or no metrics in the model card for audio classificaiton")
|
| 174 |
+
case "automatic-speech-recognition":
|
| 175 |
+
try:
|
| 176 |
+
user_asr_models = get_user_models(hf_username, task = "automatic-speech-recognition")
|
| 177 |
+
best_result, best_model_id = calculate_best_result(user_asr_models, task = "automatic-speech-recognition")
|
| 178 |
+
unit["best_result"] = best_result
|
| 179 |
+
unit["best_model_id"] = best_model_id
|
| 180 |
+
if unit["best_result"] <= unit["baseline_metric"]:
|
| 181 |
+
unit["passed_"] = True
|
| 182 |
+
unit["passed"] = pass_emoji(unit["passed_"])
|
| 183 |
+
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition")
|
| 184 |
+
case "TBD":
|
| 185 |
+
print("Evaluation for this unit is work in progress")
|
| 186 |
+
case _:
|
| 187 |
+
print("Unknown task")
|
| 188 |
|
| 189 |
print(results_certification)
|
| 190 |
|
|
|
|
| 192 |
df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']]
|
| 193 |
return df
|
| 194 |
|
|
|
|
| 195 |
with gr.Blocks() as demo:
|
| 196 |
gr.Markdown(f"""
|
| 197 |
# π Check your progress in the Audio Course π
|