Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,30 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
| 2 |
import streamlit as st
|
|
|
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
from peft import PeftModel, PeftConfig
|
| 5 |
from chromadb import HttpClient
|
| 6 |
from utils.embedding_utils import CustomEmbeddingFunction
|
| 7 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 8 |
|
| 9 |
-
st.title("FormulAI
|
|
|
|
|
|
|
| 10 |
|
|
|
|
|
|
|
| 11 |
model_name = "unsloth/Llama-3.2-1B"
|
| 12 |
|
| 13 |
-
model
|
|
|
|
| 14 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 15 |
|
|
|
|
| 16 |
adapter_name = "FormulAI/FormuLLaMa-3.2-1B-LoRA"
|
| 17 |
peft_config = PeftConfig.from_pretrained(adapter_name)
|
| 18 |
-
|
| 19 |
-
model = PeftModel(model, peft_config)
|
| 20 |
|
| 21 |
template = """Answer the following QUESTION based on the CONTEXT given.
|
| 22 |
If you do not know the answer and the CONTEXT doesn't contain the answer truthfully say "I don't know".
|
|
@@ -37,7 +45,7 @@ if 'past' not in st.session_state:
|
|
| 37 |
st.session_state['past'] = []
|
| 38 |
|
| 39 |
def get_text():
|
| 40 |
-
input_text = st.text_input("
|
| 41 |
return input_text
|
| 42 |
|
| 43 |
load_dotenv("chroma.env")
|
|
@@ -57,12 +65,11 @@ if question:
|
|
| 57 |
context = " ".join(response['documents'][0])
|
| 58 |
|
| 59 |
input_text = template.replace("{context}", context).replace("{question}", question)
|
| 60 |
-
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
| 61 |
|
| 62 |
output = model.generate(input_ids, max_new_tokens=200, early_stopping=True)
|
| 63 |
answer = tokenizer.decode(output[0], skip_special_tokens=True).split("ANSWER:")[1]
|
| 64 |
|
| 65 |
-
|
| 66 |
st.session_state.past.append(question)
|
| 67 |
st.session_state.generated.append(answer)
|
| 68 |
|
|
|
|
| 1 |
import os
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
import streamlit as st
|
| 5 |
+
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
from peft import PeftModel, PeftConfig
|
| 8 |
from chromadb import HttpClient
|
| 9 |
from utils.embedding_utils import CustomEmbeddingFunction
|
| 10 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 11 |
|
| 12 |
+
st.title("FormulAI")
|
| 13 |
+
st.write("Benvenuto FormulaAI il Chatbot riguardante la Formula Uno! Chiedimi ciò che vuoi a riguardo!")
|
| 14 |
+
st.write("I am a chatbot that has been fine-tuned on the FormuLLaMa-3.2-1B dataset.")
|
| 15 |
|
| 16 |
+
# Device and model configuration
|
| 17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 18 |
model_name = "unsloth/Llama-3.2-1B"
|
| 19 |
|
| 20 |
+
# Load pretrained model and tokenizer
|
| 21 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
| 22 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 23 |
|
| 24 |
+
# Load PEFT configuration and apply to model on device
|
| 25 |
adapter_name = "FormulAI/FormuLLaMa-3.2-1B-LoRA"
|
| 26 |
peft_config = PeftConfig.from_pretrained(adapter_name)
|
| 27 |
+
model = PeftModel(model, peft_config).to(device)
|
|
|
|
| 28 |
|
| 29 |
template = """Answer the following QUESTION based on the CONTEXT given.
|
| 30 |
If you do not know the answer and the CONTEXT doesn't contain the answer truthfully say "I don't know".
|
|
|
|
| 45 |
st.session_state['past'] = []
|
| 46 |
|
| 47 |
def get_text():
|
| 48 |
+
input_text = st.text_input("Chiedi qualcosa: ", "", key="input")
|
| 49 |
return input_text
|
| 50 |
|
| 51 |
load_dotenv("chroma.env")
|
|
|
|
| 65 |
context = " ".join(response['documents'][0])
|
| 66 |
|
| 67 |
input_text = template.replace("{context}", context).replace("{question}", question)
|
| 68 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
| 69 |
|
| 70 |
output = model.generate(input_ids, max_new_tokens=200, early_stopping=True)
|
| 71 |
answer = tokenizer.decode(output[0], skip_special_tokens=True).split("ANSWER:")[1]
|
| 72 |
|
|
|
|
| 73 |
st.session_state.past.append(question)
|
| 74 |
st.session_state.generated.append(answer)
|
| 75 |
|