Spaces:
Runtime error
Runtime error
| pip install tqdm | |
| !pip install rotary_embedding_torch | |
| !pip install transformers==4.31.0 | |
| !pip install tokenizers | |
| !pip install inflect | |
| !pip install progressbar | |
| !pip install einops==0.4.1 | |
| !pip install unidecode | |
| !pip install scipy | |
| !pip install librosa==0.9.1 | |
| !pip install ffmpeg | |
| !pip install numpy | |
| !pip install numba | |
| !pip install torchaudio | |
| !pip install threadpoolctl | |
| !pip install llvmlite | |
| !pip install appdirs | |
| !pip install nbconvert==5.3.1 | |
| !pip install tornado==4.2 | |
| !pip install pydantic==1.9.1 | |
| !pip install deepspeed==0.8.3 | |
| !pip install py-cpuinfo | |
| !pip install hjson | |
| !pip install psutil | |
| !pip install sounddevice | |
| !pip install gradio | |
| !pip install torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| class Model(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.conv1 = nn.Conv2d(1, 20, 5) | |
| self.conv2 = nn.Conv2d(20, 20, 5) | |
| def forward(self, x): | |
| x = F.relu(self.conv1(x)) | |
| return F.relu(self.conv2(x)) | |
| import gradio as gr | |
| import os | |
| import random | |
| import uuid | |
| from time import time | |
| from urllib import request | |
| import torch | |
| import torch.nn.functional as F | |
| import progressbar | |
| import torchaudio | |
| from tortoise.models.classifier import AudioMiniEncoderWithClassifierHead | |
| from tortoise.models.diffusion_decoder import DiffusionTts | |
| from tortoise.models.autoregressive import UnifiedVoice | |
| from tqdm import tqdm | |
| from tortoise.models.arch_util import TorchMelSpectrogram | |
| from tortoise.models.clvp import CLVP | |
| from tortoise.models.cvvp import CVVP | |
| from tortoise.models.random_latent_generator import RandomLatentConverter | |
| from tortoise.models.vocoder import UnivNetGenerator | |
| from tortoise.utils.audio import wav_to_univnet_mel, denormalize_tacotron_mel | |
| from tortoise.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule | |
| from tortoise.utils.tokenizer import VoiceBpeTokenizer | |
| from tortoise.utils.wav2vec_alignment import Wav2VecAlignment | |
| from contextlib import contextmanager | |
| from huggingface_hub import hf_hub_download | |
| pbar = None | |
| DEFAULT_MODELS_DIR = os.path.join(os.path.expanduser('~'), '.cache', 'tortoise', 'models') | |
| MODELS_DIR = os.environ.get('TORTOISE_MODELS_DIR', DEFAULT_MODELS_DIR) | |
| MODELS = { | |
| 'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/autoregressive.pth', | |
| 'classifier.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/classifier.pth', | |
| 'clvp2.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/clvp2.pth', | |
| 'cvvp.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/cvvp.pth', | |
| 'diffusion_decoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/diffusion_decoder.pth', | |
| 'vocoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/vocoder.pth', | |
| 'rlg_auto.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_auto.pth', | |
| 'rlg_diffuser.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_diffuser.pth', | |
| } | |
| def get_model_path(model_name, models_dir=MODELS_DIR): | |
| """ | |
| Get path to given model, download it if it doesn't exist. | |
| """ | |
| if model_name not in MODELS: | |
| raise ValueError(f'Model {model_name} not found in available models.') | |
| model_path = hf_hub_download(repo_id="Manmay/tortoise-tts", filename=model_name, cache_dir=models_dir) | |
| return model_path | |
| def pad_or_truncate(t, length): | |
| """ | |
| Utility function for forcing <t> to have the specified sequence length, whether by clipping it or padding it with 0s. | |
| """ | |
| if t.shape[-1] == length: | |
| return t | |
| elif t.shape[-1] < length: | |
| return F.pad(t, (0, length-t.shape[-1])) | |
| else: | |
| return t[..., :length] | |
| def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1): | |
| """ | |
| Helper function to load a GaussianDiffusion instance configured for use as a vocoder. | |
| """ | |
| return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon', | |
| model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps), | |
| conditioning_free=cond_free, conditioning_free_k=cond_free_k) | |
| def format_conditioning(clip, cond_length=132300, device="cuda" if not torch.backends.mps.is_available() else 'mps'): | |
| """ | |
| Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models. | |
| """ | |
| gap = clip.shape[-1] - cond_length | |
| if gap < 0: | |
| clip = F.pad(clip, pad=(0, abs(gap))) | |
| elif gap > 0: | |
| rand_start = random.randint(0, gap) | |
| clip = clip[:, rand_start:rand_start + cond_length] | |
| mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0) | |
| return mel_clip.unsqueeze(0).to(device) | |
| def fix_autoregressive_output(codes, stop_token, complain=True): | |
| """ | |
| This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was | |
| trained on and what the autoregressive code generator creates (which has no padding or end). | |
| This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with | |
| a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE | |
| and copying out the last few codes. | |
| Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar. | |
| """ | |
| # Strip off the autoregressive stop token and add padding. | |
| stop_token_indices = (codes == stop_token).nonzero() | |
| if len(stop_token_indices) == 0: | |
| if complain: | |
| print("No stop tokens found in one of the generated voice clips. This typically means the spoken audio is " | |
| "too long. In some cases, the output will still be good, though. Listen to it and if it is missing words, " | |
| "try breaking up your input text.") | |
| return codes | |
| else: | |
| codes[stop_token_indices] = 83 | |
| stm = stop_token_indices.min().item() | |
| codes[stm:] = 83 | |
| if stm - 3 < codes.shape[0]: | |
| codes[-3] = 45 | |
| codes[-2] = 45 | |
| codes[-1] = 248 | |
| return codes | |
| def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_latents, temperature=1, verbose=True): | |
| """ | |
| Uses the specified diffusion model to convert discrete codes into a spectrogram. | |
| """ | |
| with torch.no_grad(): | |
| output_seq_len = latents.shape[1] * 4 * 24000 // 22050 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal. | |
| output_shape = (latents.shape[0], 100, output_seq_len) | |
| precomputed_embeddings = diffusion_model.timestep_independent(latents, conditioning_latents, output_seq_len, False) | |
| noise = torch.randn(output_shape, device=latents.device) * temperature | |
| mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise, | |
| model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings}, | |
| progress=verbose) | |
| return denormalize_tacotron_mel(mel)[:,:,:output_seq_len] | |
| def classify_audio_clip(clip): | |
| """ | |
| Returns whether or not Tortoises' classifier thinks the given clip came from Tortoise. | |
| :param clip: torch tensor containing audio waveform data (get it from load_audio) | |
| :return: True if the clip was classified as coming from Tortoise and false if it was classified as real. | |
| """ | |
| classifier = AudioMiniEncoderWithClassifierHead(2, spec_dim=1, embedding_dim=512, depth=5, downsample_factor=4, | |
| resnet_blocks=2, attn_blocks=4, num_attn_heads=4, base_channels=32, | |
| dropout=0, kernel_size=5, distribute_zero_label=False) | |
| classifier.load_state_dict(torch.load(get_model_path('classifier.pth'), map_location=torch.device('cpu'))) | |
| clip = clip.cpu().unsqueeze(0) | |
| results = F.softmax(classifier(clip), dim=-1) | |
| return results[0][0] | |
| def pick_best_batch_size_for_gpu(): | |
| """ | |
| Tries to pick a batch size that will fit in your GPU. These sizes aren't guaranteed to work, but they should give | |
| you a good shot. | |
| """ | |
| if torch.cuda.is_available(): | |
| _, available = torch.cuda.mem_get_info() | |
| availableGb = available / (1024 ** 3) | |
| if availableGb > 14: | |
| return 16 | |
| elif availableGb > 10: | |
| return 8 | |
| elif availableGb > 7: | |
| return 4 | |
| if torch.backends.mps.is_available(): | |
| import psutil | |
| available = psutil.virtual_memory().total | |
| availableGb = available / (1024 ** 3) | |
| if availableGb > 14: | |
| return 16 | |
| elif availableGb > 10: | |
| return 8 | |
| elif availableGb > 7: | |
| return 4 | |
| return 1 | |
| class TextToSpeech: | |
| """ | |
| Main entry point into Tortoise. | |
| """ | |
| def __init__(self, autoregressive_batch_size=None, models_dir=MODELS_DIR, | |
| enable_redaction=True, kv_cache=False, use_deepspeed=False, half=False, device=None, | |
| tokenizer_vocab_file=None, tokenizer_basic=False): | |
| """ | |
| Constructor | |
| :param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing | |
| GPU OOM errors. Larger numbers generates slightly faster. | |
| :param models_dir: Where model weights are stored. This should only be specified if you are providing your own | |
| models, otherwise use the defaults. | |
| :param enable_redaction: When true, text enclosed in brackets are automatically redacted from the spoken output | |
| (but are still rendered by the model). This can be used for prompt engineering. | |
| Default is true. | |
| :param device: Device to use when running the model. If omitted, the device will be automatically chosen. | |
| """ | |
| self.models_dir = models_dir | |
| self.autoregressive_batch_size = pick_best_batch_size_for_gpu() if autoregressive_batch_size is None else autoregressive_batch_size | |
| self.enable_redaction = enable_redaction | |
| self.device = torch.device('cuda' if torch.cuda.is_available() else'cpu') | |
| if torch.backends.mps.is_available(): | |
| self.device = torch.device('mps') | |
| if self.enable_redaction: | |
| self.aligner = Wav2VecAlignment() | |
| self.tokenizer = VoiceBpeTokenizer( | |
| vocab_file=tokenizer_vocab_file, | |
| use_basic_cleaners=tokenizer_basic, | |
| ) | |
| self.half = half | |
| if os.path.exists(f'{models_dir}/autoregressive.ptt'): | |
| # Assume this is a traced directory. | |
| self.autoregressive = torch.jit.load(f'{models_dir}/autoregressive.ptt') | |
| self.diffusion = torch.jit.load(f'{models_dir}/diffusion_decoder.ptt') | |
| else: | |
| self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30, | |
| model_dim=1024, | |
| heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False, | |
| train_solo_embeddings=False).cpu().eval() | |
| self.autoregressive.load_state_dict(torch.load(get_model_path('autoregressive.pth', models_dir)), strict=False) | |
| self.autoregressive.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=kv_cache, half=self.half) | |
| self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200, | |
| in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16, | |
| layer_drop=0, unconditioned_percentage=0).cpu().eval() | |
| self.diffusion.load_state_dict(torch.load(get_model_path('diffusion_decoder.pth', models_dir))) | |
| self.clvp = CLVP(dim_text=768, dim_speech=768, dim_latent=768, num_text_tokens=256, text_enc_depth=20, | |
| text_seq_len=350, text_heads=12, | |
| num_speech_tokens=8192, speech_enc_depth=20, speech_heads=12, speech_seq_len=430, | |
| use_xformers=True).cpu().eval() | |
| self.clvp.load_state_dict(torch.load(get_model_path('clvp2.pth', models_dir))) | |
| self.cvvp = None # CVVP model is only loaded if used. | |
| self.vocoder = UnivNetGenerator().cpu() | |
| self.vocoder.load_state_dict(torch.load(get_model_path('vocoder.pth', models_dir), map_location=torch.device('cpu'))['model_g']) | |
| self.vocoder.eval(inference=True) | |
| # Random latent generators (RLGs) are loaded lazily. | |
| self.rlg_auto = None | |
| self.rlg_diffusion = None | |
| def temporary_cuda(self, model): | |
| m = model.to(self.device) | |
| yield m | |
| m = model.cpu() | |
| def load_cvvp(self): | |
| """Load CVVP model.""" | |
| self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0, | |
| speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval() | |
| self.cvvp.load_state_dict(torch.load(get_model_path('cvvp.pth', self.models_dir))) | |
| def get_conditioning_latents(self, voice_samples, return_mels=False): | |
| """ | |
| Transforms one or more voice_samples into a tuple (autoregressive_conditioning_latent, diffusion_conditioning_latent). | |
| These are expressive learned latents that encode aspects of the provided clips like voice, intonation, and acoustic | |
| properties. | |
| :param voice_samples: List of 2 or more ~10 second reference clips, which should be torch tensors containing 22.05kHz waveform data. | |
| """ | |
| with torch.no_grad(): | |
| voice_samples = [v.to(self.device) for v in voice_samples] | |
| auto_conds = [] | |
| if not isinstance(voice_samples, list): | |
| voice_samples = [voice_samples] | |
| for vs in voice_samples: | |
| auto_conds.append(format_conditioning(vs, device=self.device)) | |
| auto_conds = torch.stack(auto_conds, dim=1) | |
| self.autoregressive = self.autoregressive.to(self.device) | |
| auto_latent = self.autoregressive.get_conditioning(auto_conds) | |
| self.autoregressive = self.autoregressive.cpu() | |
| diffusion_conds = [] | |
| for sample in voice_samples: | |
| # The diffuser operates at a sample rate of 24000 (except for the latent inputs) | |
| sample = torchaudio.functional.resample(sample, 22050, 24000) | |
| sample = pad_or_truncate(sample, 102400) | |
| cond_mel = wav_to_univnet_mel(sample.to(self.device), do_normalization=False, device=self.device) | |
| diffusion_conds.append(cond_mel) | |
| diffusion_conds = torch.stack(diffusion_conds, dim=1) | |
| self.diffusion = self.diffusion.to(self.device) | |
| diffusion_latent = self.diffusion.get_conditioning(diffusion_conds) | |
| self.diffusion = self.diffusion.cpu() | |
| if return_mels: | |
| return auto_latent, diffusion_latent, auto_conds, diffusion_conds | |
| else: | |
| return auto_latent, diffusion_latent | |
| def get_random_conditioning_latents(self): | |
| # Lazy-load the RLG models. | |
| if self.rlg_auto is None: | |
| self.rlg_auto = RandomLatentConverter(1024).eval() | |
| self.rlg_auto.load_state_dict(torch.load(get_model_path('rlg_auto.pth', self.models_dir), map_location=torch.device('cpu'))) | |
| self.rlg_diffusion = RandomLatentConverter(2048).eval() | |
| self.rlg_diffusion.load_state_dict(torch.load(get_model_path('rlg_diffuser.pth', self.models_dir), map_location=torch.device('cpu'))) | |
| with torch.no_grad(): | |
| return self.rlg_auto(torch.tensor([0.0])), self.rlg_diffusion(torch.tensor([0.0])) | |
| def tts_with_preset(self, text, preset='fast', **kwargs): | |
| """ | |
| Calls TTS with one of a set of preset generation parameters. Options: | |
| 'ultra_fast': Produces speech at a speed which belies the name of this repo. (Not really, but it's definitely fastest). | |
| 'fast': Decent quality speech at a decent inference rate. A good choice for mass inference. | |
| 'standard': Very good quality. This is generally about as good as you are going to get. | |
| 'high_quality': Use if you want the absolute best. This is not really worth the compute, though. | |
| """ | |
| # Use generally found best tuning knobs for generation. | |
| settings = {'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0, | |
| 'top_p': .8, | |
| 'cond_free_k': 2.0, 'diffusion_temperature': 1.0} | |
| # Presets are defined here. | |
| presets = { | |
| 'ultra_fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False}, | |
| 'fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80}, | |
| 'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200}, | |
| 'high_quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400}, | |
| } | |
| settings.update(presets[preset]) | |
| settings.update(kwargs) # allow overriding of preset settings with kwargs | |
| return self.tts(text, **settings) | |
| def tts(self, text, voice_samples=None, conditioning_latents=None, k=1, verbose=True, use_deterministic_seed=None, | |
| return_deterministic_state=False, | |
| # autoregressive generation parameters follow | |
| num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500, | |
| # CVVP parameters follow | |
| cvvp_amount=.0, | |
| # diffusion generation parameters follow | |
| diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0, | |
| **hf_generate_kwargs): | |
| """ | |
| Produces an audio clip of the given text being spoken with the given reference voice. | |
| :param text: Text to be spoken. | |
| :param voice_samples: List of 2 or more ~10 second reference clips which should be torch tensors containing 22.05kHz waveform data. | |
| :param conditioning_latents: A tuple of (autoregressive_conditioning_latent, diffusion_conditioning_latent), which | |
| can be provided in lieu of voice_samples. This is ignored unless voice_samples=None. | |
| Conditioning latents can be retrieved via get_conditioning_latents(). | |
| :param k: The number of returned clips. The most likely (as determined by Tortoises' CLVP model) clips are returned. | |
| :param verbose: Whether or not to print log messages indicating the progress of creating a clip. Default=true. | |
| ~~AUTOREGRESSIVE KNOBS~~ | |
| :param num_autoregressive_samples: Number of samples taken from the autoregressive model, all of which are filtered using CLVP. | |
| As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great". | |
| :param temperature: The softmax temperature of the autoregressive model. | |
| :param length_penalty: A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs. | |
| :param repetition_penalty: A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce the incidence | |
| of long silences or "uhhhhhhs", etc. | |
| :param top_p: P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs. | |
| :param max_mel_tokens: Restricts the output length. (0,600] integer. Each unit is 1/20 of a second. | |
| :param typical_sampling: Turns typical sampling on or off. This sampling mode is discussed in this paper: https://arxiv.org/abs/2202.00666 | |
| I was interested in the premise, but the results were not as good as I was hoping. This is off by default, but | |
| could use some tuning. | |
| :param typical_mass: The typical_mass parameter from the typical_sampling algorithm. | |
| ~~CLVP-CVVP KNOBS~~ | |
| :param cvvp_amount: Controls the influence of the CVVP model in selecting the best output from the autoregressive model. | |
| [0,1]. Values closer to 1 mean the CVVP model is more important, 0 disables the CVVP model. | |
| ~~DIFFUSION KNOBS~~ | |
| :param diffusion_iterations: Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine | |
| the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better, | |
| however. | |
| :param cond_free: Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for | |
| each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output | |
| of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and | |
| dramatically improves realism. | |
| :param cond_free_k: Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. | |
| As cond_free_k increases, the output becomes dominated by the conditioning-free signal. | |
| Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k | |
| :param diffusion_temperature: Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 | |
| are the "mean" prediction of the diffusion network and will sound bland and smeared. | |
| ~~OTHER STUFF~~ | |
| :param hf_generate_kwargs: The huggingface Transformers generate API is used for the autoregressive transformer. | |
| Extra keyword args fed to this function get forwarded directly to that API. Documentation | |
| here: https://huggingface.co/docs/transformers/internal/generation_utils | |
| :return: Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length. | |
| Sample rate is 24kHz. | |
| """ | |
| deterministic_seed = self.deterministic_state(seed=use_deterministic_seed) | |
| text_tokens = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).to(self.device) | |
| text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary. | |
| assert text_tokens.shape[-1] < 400, 'Too much text provided. Break the text up into separate segments and re-try inference.' | |
| auto_conds = None | |
| if voice_samples is not None: | |
| auto_conditioning, diffusion_conditioning, auto_conds, _ = self.get_conditioning_latents(voice_samples, return_mels=True) | |
| elif conditioning_latents is not None: | |
| auto_conditioning, diffusion_conditioning = conditioning_latents | |
| else: | |
| auto_conditioning, diffusion_conditioning = self.get_random_conditioning_latents() | |
| auto_conditioning = auto_conditioning.to(self.device) | |
| diffusion_conditioning = diffusion_conditioning.to(self.device) | |
| diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k) | |
| with torch.no_grad(): | |
| samples = [] | |
| num_batches = num_autoregressive_samples // self.autoregressive_batch_size | |
| stop_mel_token = self.autoregressive.stop_mel_token | |
| calm_token = 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output" | |
| if verbose: | |
| print("Generating autoregressive samples..") | |
| if not torch.backends.mps.is_available(): | |
| with self.temporary_cuda(self.autoregressive | |
| ) as autoregressive, torch.autocast(device_type="cuda", dtype=torch.float16, enabled=self.half): | |
| for b in tqdm(range(num_batches), disable=not verbose): | |
| codes = autoregressive.inference_speech(auto_conditioning, text_tokens, | |
| do_sample=True, | |
| top_p=top_p, | |
| temperature=temperature, | |
| num_return_sequences=self.autoregressive_batch_size, | |
| length_penalty=length_penalty, | |
| repetition_penalty=repetition_penalty, | |
| max_generate_length=max_mel_tokens, | |
| **hf_generate_kwargs) | |
| padding_needed = max_mel_tokens - codes.shape[1] | |
| codes = F.pad(codes, (0, padding_needed), value=stop_mel_token) | |
| samples.append(codes) | |
| else: | |
| with self.temporary_cuda(self.autoregressive) as autoregressive: | |
| for b in tqdm(range(num_batches), disable=not verbose): | |
| codes = autoregressive.inference_speech(auto_conditioning, text_tokens, | |
| do_sample=True, | |
| top_p=top_p, | |
| temperature=temperature, | |
| num_return_sequences=self.autoregressive_batch_size, | |
| length_penalty=length_penalty, | |
| repetition_penalty=repetition_penalty, | |
| max_generate_length=max_mel_tokens, | |
| **hf_generate_kwargs) | |
| padding_needed = max_mel_tokens - codes.shape[1] | |
| codes = F.pad(codes, (0, padding_needed), value=stop_mel_token) | |
| samples.append(codes) | |
| clip_results = [] | |
| if not torch.backends.mps.is_available(): | |
| with self.temporary_cuda(self.clvp) as clvp, torch.autocast( | |
| device_type="cuda" if not torch.backends.mps.is_available() else 'mps', dtype=torch.float16, enabled=self.half | |
| ): | |
| if cvvp_amount > 0: | |
| if self.cvvp is None: | |
| self.load_cvvp() | |
| self.cvvp = self.cvvp.to(self.device) | |
| if verbose: | |
| if self.cvvp is None: | |
| print("Computing best candidates using CLVP") | |
| else: | |
| print(f"Computing best candidates using CLVP {((1-cvvp_amount) * 100):2.0f}% and CVVP {(cvvp_amount * 100):2.0f}%") | |
| for batch in tqdm(samples, disable=not verbose): | |
| for i in range(batch.shape[0]): | |
| batch[i] = fix_autoregressive_output(batch[i], stop_mel_token) | |
| if cvvp_amount != 1: | |
| clvp_out = clvp(text_tokens.repeat(batch.shape[0], 1), batch, return_loss=False) | |
| if auto_conds is not None and cvvp_amount > 0: | |
| cvvp_accumulator = 0 | |
| for cl in range(auto_conds.shape[1]): | |
| cvvp_accumulator = cvvp_accumulator + self.cvvp(auto_conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False) | |
| cvvp = cvvp_accumulator / auto_conds.shape[1] | |
| if cvvp_amount == 1: | |
| clip_results.append(cvvp) | |
| else: | |
| clip_results.append(cvvp * cvvp_amount + clvp_out * (1-cvvp_amount)) | |
| else: | |
| clip_results.append(clvp_out) | |
| clip_results = torch.cat(clip_results, dim=0) | |
| samples = torch.cat(samples, dim=0) | |
| best_results = samples[torch.topk(clip_results, k=k).indices] | |
| else: | |
| with self.temporary_cuda(self.clvp) as clvp: | |
| if cvvp_amount > 0: | |
| if self.cvvp is None: | |
| self.load_cvvp() | |
| self.cvvp = self.cvvp.to(self.device) | |
| if verbose: | |
| if self.cvvp is None: | |
| print("Computing best candidates using CLVP") | |
| else: | |
| print(f"Computing best candidates using CLVP {((1-cvvp_amount) * 100):2.0f}% and CVVP {(cvvp_amount * 100):2.0f}%") | |
| for batch in tqdm(samples, disable=not verbose): | |
| for i in range(batch.shape[0]): | |
| batch[i] = fix_autoregressive_output(batch[i], stop_mel_token) | |
| if cvvp_amount != 1: | |
| clvp_out = clvp(text_tokens.repeat(batch.shape[0], 1), batch, return_loss=False) | |
| if auto_conds is not None and cvvp_amount > 0: | |
| cvvp_accumulator = 0 | |
| for cl in range(auto_conds.shape[1]): | |
| cvvp_accumulator = cvvp_accumulator + self.cvvp(auto_conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False) | |
| cvvp = cvvp_accumulator / auto_conds.shape[1] | |
| if cvvp_amount == 1: | |
| clip_results.append(cvvp) | |
| else: | |
| clip_results.append(cvvp * cvvp_amount + clvp_out * (1-cvvp_amount)) | |
| else: | |
| clip_results.append(clvp_out) | |
| clip_results = torch.cat(clip_results, dim=0) | |
| samples = torch.cat(samples, dim=0) | |
| best_results = samples[torch.topk(clip_results, k=k).indices] | |
| if self.cvvp is not None: | |
| self.cvvp = self.cvvp.cpu() | |
| del samples | |
| # The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning | |
| # inputs. Re-produce those for the top results. This could be made more efficient by storing all of these | |
| # results, but will increase memory usage. | |
| if not torch.backends.mps.is_available(): | |
| with self.temporary_cuda( | |
| self.autoregressive | |
| ) as autoregressive, torch.autocast( | |
| device_type="cuda" if not torch.backends.mps.is_available() else 'mps', dtype=torch.float16, enabled=self.half | |
| ): | |
| best_latents = autoregressive(auto_conditioning.repeat(k, 1), text_tokens.repeat(k, 1), | |
| torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), best_results, | |
| torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=text_tokens.device), | |
| return_latent=True, clip_inputs=False) | |
| del auto_conditioning | |
| else: | |
| with self.temporary_cuda( | |
| self.autoregressive | |
| ) as autoregressive: | |
| best_latents = autoregressive(auto_conditioning.repeat(k, 1), text_tokens.repeat(k, 1), | |
| torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), best_results, | |
| torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=text_tokens.device), | |
| return_latent=True, clip_inputs=False) | |
| del auto_conditioning | |
| if verbose: | |
| print("Transforming autoregressive outputs into audio..") | |
| wav_candidates = [] | |
| if not torch.backends.mps.is_available(): | |
| with self.temporary_cuda(self.diffusion) as diffusion, self.temporary_cuda( | |
| self.vocoder | |
| ) as vocoder: | |
| for b in range(best_results.shape[0]): | |
| codes = best_results[b].unsqueeze(0) | |
| latents = best_latents[b].unsqueeze(0) | |
| # Find the first occurrence of the "calm" token and trim the codes to that. | |
| ctokens = 0 | |
| for k in range(codes.shape[-1]): | |
| if codes[0, k] == calm_token: | |
| ctokens += 1 | |
| else: | |
| ctokens = 0 | |
| if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech. | |
| latents = latents[:, :k] | |
| break | |
| mel = do_spectrogram_diffusion(diffusion, diffuser, latents, diffusion_conditioning, temperature=diffusion_temperature, | |
| verbose=verbose) | |
| wav = vocoder.inference(mel) | |
| wav_candidates.append(wav.cpu()) | |
| else: | |
| diffusion, vocoder = self.diffusion, self.vocoder | |
| diffusion_conditioning = diffusion_conditioning.cpu() | |
| for b in range(best_results.shape[0]): | |
| codes = best_results[b].unsqueeze(0).cpu() | |
| latents = best_latents[b].unsqueeze(0).cpu() | |
| # Find the first occurrence of the "calm" token and trim the codes to that. | |
| ctokens = 0 | |
| for k in range(codes.shape[-1]): | |
| if codes[0, k] == calm_token: | |
| ctokens += 1 | |
| else: | |
| ctokens = 0 | |
| if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech. | |
| latents = latents[:, :k] | |
| break | |
| mel = do_spectrogram_diffusion(diffusion, diffuser, latents, diffusion_conditioning, temperature=diffusion_temperature, | |
| verbose=verbose) | |
| wav = vocoder.inference(mel) | |
| wav_candidates.append(wav.cpu()) | |
| def potentially_redact(clip, text): | |
| if self.enable_redaction: | |
| return self.aligner.redact(clip.squeeze(1), text).unsqueeze(1) | |
| return clip | |
| wav_candidates = [potentially_redact(wav_candidate, text) for wav_candidate in wav_candidates] | |
| if len(wav_candidates) > 1: | |
| res = wav_candidates | |
| else: | |
| res = wav_candidates[0] | |
| if return_deterministic_state: | |
| return res, (deterministic_seed, text, voice_samples, conditioning_latents) | |
| else: | |
| return res | |
| def deterministic_state(self, seed=None): | |
| """ | |
| Sets the random seeds that tortoise uses to the current time() and returns that seed so results can be | |
| reproduced. | |
| """ | |
| seed = int(time()) if seed is None else seed | |
| torch.manual_seed(seed) | |
| random.seed(seed) | |
| # Can't currently set this because of CUBLAS. TODO: potentially enable it if necessary. | |
| # torch.use_deterministic_algorithms(True) | |
| return seed | |