Spaces:
Configuration error
Configuration error
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from diff_gaussian_rasterization import ( | |
| GaussianRasterizationSettings, | |
| GaussianRasterizer, | |
| ) | |
| from core.options import Options | |
| import kiui | |
| class GaussianRenderer: | |
| def __init__(self, opt: Options): | |
| self.opt = opt | |
| self.bg_color = torch.tensor([1, 1, 1], dtype=torch.float32, device="cuda") | |
| # intrinsics | |
| self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy)) | |
| self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32) | |
| self.proj_matrix[0, 0] = 1 / self.tan_half_fov | |
| self.proj_matrix[1, 1] = 1 / self.tan_half_fov | |
| self.proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear) | |
| self.proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear) | |
| self.proj_matrix[2, 3] = 1 | |
| def render(self, gaussians, cam_view, cam_view_proj, cam_pos, bg_color=None, scale_modifier=1): | |
| # gaussians: [B, N, 14] | |
| # cam_view, cam_view_proj: [B, V, 4, 4] | |
| # cam_pos: [B, V, 3] | |
| device = gaussians.device | |
| B, V = cam_view.shape[:2] | |
| # loop of loop... | |
| images = [] | |
| alphas = [] | |
| for b in range(B): | |
| # pos, opacity, scale, rotation, shs | |
| means3D = gaussians[b, :, 0:3].contiguous().float() | |
| opacity = gaussians[b, :, 3:4].contiguous().float() | |
| scales = gaussians[b, :, 4:7].contiguous().float() | |
| rotations = gaussians[b, :, 7:11].contiguous().float() | |
| rgbs = gaussians[b, :, 11:].contiguous().float() # [N, 3] | |
| for v in range(V): | |
| # render novel views | |
| view_matrix = cam_view[b, v].float() | |
| view_proj_matrix = cam_view_proj[b, v].float() | |
| campos = cam_pos[b, v].float() | |
| raster_settings = GaussianRasterizationSettings( | |
| image_height=self.opt.output_size, | |
| image_width=self.opt.output_size, | |
| tanfovx=self.tan_half_fov, | |
| tanfovy=self.tan_half_fov, | |
| bg=self.bg_color if bg_color is None else bg_color, | |
| scale_modifier=scale_modifier, | |
| viewmatrix=view_matrix, | |
| projmatrix=view_proj_matrix, | |
| sh_degree=0, | |
| campos=campos, | |
| prefiltered=False, | |
| debug=False, | |
| ) | |
| rasterizer = GaussianRasterizer(raster_settings=raster_settings) | |
| # Rasterize visible Gaussians to image, obtain their radii (on screen). | |
| rendered_image, radii, rendered_depth, rendered_alpha = rasterizer( | |
| means3D=means3D, | |
| means2D=torch.zeros_like(means3D, dtype=torch.float32, device=device), | |
| shs=None, | |
| colors_precomp=rgbs, | |
| opacities=opacity, | |
| scales=scales, | |
| rotations=rotations, | |
| cov3D_precomp=None, | |
| ) | |
| rendered_image = rendered_image.clamp(0, 1) | |
| images.append(rendered_image) | |
| alphas.append(rendered_alpha) | |
| images = torch.stack(images, dim=0).view(B, V, 3, self.opt.output_size, self.opt.output_size) | |
| alphas = torch.stack(alphas, dim=0).view(B, V, 1, self.opt.output_size, self.opt.output_size) | |
| return { | |
| "image": images, # [B, V, 3, H, W] | |
| "alpha": alphas, # [B, V, 1, H, W] | |
| } | |
| def save_ply(self, gaussians, path, compatible=True): | |
| # gaussians: [B, N, 14] | |
| # compatible: save pre-activated gaussians as in the original paper | |
| assert gaussians.shape[0] == 1, 'only support batch size 1' | |
| from plyfile import PlyData, PlyElement | |
| means3D = gaussians[0, :, 0:3].contiguous().float() | |
| opacity = gaussians[0, :, 3:4].contiguous().float() | |
| scales = gaussians[0, :, 4:7].contiguous().float() | |
| rotations = gaussians[0, :, 7:11].contiguous().float() | |
| shs = gaussians[0, :, 11:].unsqueeze(1).contiguous().float() # [N, 1, 3] | |
| # prune by opacity | |
| mask = opacity.squeeze(-1) >= 0.005 | |
| means3D = means3D[mask] | |
| opacity = opacity[mask] | |
| scales = scales[mask] | |
| rotations = rotations[mask] | |
| shs = shs[mask] | |
| # invert activation to make it compatible with the original ply format | |
| if compatible: | |
| opacity = kiui.op.inverse_sigmoid(opacity) | |
| scales = torch.log(scales + 1e-8) | |
| shs = (shs - 0.5) / 0.28209479177387814 | |
| xyzs = means3D.detach().cpu().numpy() | |
| f_dc = shs.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() | |
| opacities = opacity.detach().cpu().numpy() | |
| scales = scales.detach().cpu().numpy() | |
| rotations = rotations.detach().cpu().numpy() | |
| l = ['x', 'y', 'z'] | |
| # All channels except the 3 DC | |
| for i in range(f_dc.shape[1]): | |
| l.append('f_dc_{}'.format(i)) | |
| l.append('opacity') | |
| for i in range(scales.shape[1]): | |
| l.append('scale_{}'.format(i)) | |
| for i in range(rotations.shape[1]): | |
| l.append('rot_{}'.format(i)) | |
| dtype_full = [(attribute, 'f4') for attribute in l] | |
| elements = np.empty(xyzs.shape[0], dtype=dtype_full) | |
| attributes = np.concatenate((xyzs, f_dc, opacities, scales, rotations), axis=1) | |
| elements[:] = list(map(tuple, attributes)) | |
| el = PlyElement.describe(elements, 'vertex') | |
| PlyData([el]).write(path) | |
| def load_ply(self, path, compatible=True): | |
| from plyfile import PlyData, PlyElement | |
| plydata = PlyData.read(path) | |
| xyz = np.stack((np.asarray(plydata.elements[0]["x"]), | |
| np.asarray(plydata.elements[0]["y"]), | |
| np.asarray(plydata.elements[0]["z"])), axis=1) | |
| print("Number of points at loading : ", xyz.shape[0]) | |
| opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis] | |
| shs = np.zeros((xyz.shape[0], 3)) | |
| shs[:, 0] = np.asarray(plydata.elements[0]["f_dc_0"]) | |
| shs[:, 1] = np.asarray(plydata.elements[0]["f_dc_1"]) | |
| shs[:, 2] = np.asarray(plydata.elements[0]["f_dc_2"]) | |
| scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")] | |
| scales = np.zeros((xyz.shape[0], len(scale_names))) | |
| for idx, attr_name in enumerate(scale_names): | |
| scales[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
| rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot_")] | |
| rots = np.zeros((xyz.shape[0], len(rot_names))) | |
| for idx, attr_name in enumerate(rot_names): | |
| rots[:, idx] = np.asarray(plydata.elements[0][attr_name]) | |
| gaussians = np.concatenate([xyz, opacities, scales, rots, shs], axis=1) | |
| gaussians = torch.from_numpy(gaussians).float() # cpu | |
| if compatible: | |
| gaussians[..., 3:4] = torch.sigmoid(gaussians[..., 3:4]) | |
| gaussians[..., 4:7] = torch.exp(gaussians[..., 4:7]) | |
| gaussians[..., 11:] = 0.28209479177387814 * gaussians[..., 11:] + 0.5 | |
| return gaussians |