Spaces:
Configuration error
Configuration error
| import torch | |
| import torch.nn.functional as F | |
| import inspect | |
| import numpy as np | |
| from typing import Callable, List, Optional, Union | |
| from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor | |
| from diffusers import AutoencoderKL, DiffusionPipeline | |
| from diffusers.utils import ( | |
| deprecate, | |
| is_accelerate_available, | |
| is_accelerate_version, | |
| logging, | |
| ) | |
| from diffusers.configuration_utils import FrozenDict | |
| from diffusers.schedulers import DDIMScheduler | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from mvdream.mv_unet import MultiViewUNetModel, get_camera | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class MVDreamPipeline(DiffusionPipeline): | |
| _optional_components = ["feature_extractor", "image_encoder"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| unet: MultiViewUNetModel, | |
| tokenizer: CLIPTokenizer, | |
| text_encoder: CLIPTextModel, | |
| scheduler: DDIMScheduler, | |
| # imagedream variant | |
| feature_extractor: CLIPImageProcessor, | |
| image_encoder: CLIPVisionModel, | |
| requires_safety_checker: bool = False, | |
| ): | |
| super().__init__() | |
| if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: # type: ignore | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
| f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " # type: ignore | |
| "to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
| " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
| " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
| " file" | |
| ) | |
| deprecate( | |
| "steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False | |
| ) | |
| new_config = dict(scheduler.config) | |
| new_config["steps_offset"] = 1 | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: # type: ignore | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | |
| " `clip_sample` should be set to False in the configuration file. Please make sure to update the" | |
| " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | |
| " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | |
| " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | |
| ) | |
| deprecate( | |
| "clip_sample not set", "1.0.0", deprecation_message, standard_warn=False | |
| ) | |
| new_config = dict(scheduler.config) | |
| new_config["clip_sample"] = False | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| self.register_modules( | |
| vae=vae, | |
| unet=unet, | |
| scheduler=scheduler, | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| feature_extractor=feature_extractor, | |
| image_encoder=image_encoder, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.register_to_config(requires_safety_checker=requires_safety_checker) | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. | |
| When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several | |
| steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| def enable_vae_tiling(self): | |
| r""" | |
| Enable tiled VAE decoding. | |
| When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in | |
| several steps. This is useful to save a large amount of memory and to allow the processing of larger images. | |
| """ | |
| self.vae.enable_tiling() | |
| def disable_vae_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_tiling() | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
| text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | |
| `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
| Note that offloading happens on a submodule basis. Memory savings are higher than with | |
| `enable_model_cpu_offload`, but performance is lower. | |
| """ | |
| if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError( | |
| "`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher" | |
| ) | |
| device = torch.device(f"cuda:{gpu_id}") | |
| if self.device.type != "cpu": | |
| self.to("cpu", silence_dtype_warnings=True) | |
| torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
| cpu_offload(cpu_offloaded_model, device) | |
| def enable_model_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
| to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
| method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
| `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
| """ | |
| if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
| from accelerate import cpu_offload_with_hook | |
| else: | |
| raise ImportError( | |
| "`enable_model_offload` requires `accelerate v0.17.0` or higher." | |
| ) | |
| device = torch.device(f"cuda:{gpu_id}") | |
| if self.device.type != "cpu": | |
| self.to("cpu", silence_dtype_warnings=True) | |
| torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
| hook = None | |
| for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]: | |
| _, hook = cpu_offload_with_hook( | |
| cpu_offloaded_model, device, prev_module_hook=hook | |
| ) | |
| # We'll offload the last model manually. | |
| self.final_offload_hook = hook | |
| def _execution_device(self): | |
| r""" | |
| Returns the device on which the pipeline's models will be executed. After calling | |
| `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
| hooks. | |
| """ | |
| if not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance: bool, | |
| negative_prompt=None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | |
| Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| """ | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| raise ValueError( | |
| f"`prompt` should be either a string or a list of strings, but got {type(prompt)}." | |
| ) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer( | |
| prompt, padding="longest", return_tensors="pt" | |
| ).input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if ( | |
| hasattr(self.text_encoder.config, "use_attention_mask") | |
| and self.text_encoder.config.use_attention_mask | |
| ): | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| prompt_embeds = prompt_embeds[0] | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view( | |
| bs_embed * num_images_per_prompt, seq_len, -1 | |
| ) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if ( | |
| hasattr(self.text_encoder.config, "use_attention_mask") | |
| and self.text_encoder.config.use_attention_mask | |
| ): | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to( | |
| dtype=self.text_encoder.dtype, device=device | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat( | |
| 1, num_images_per_prompt, 1 | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds.view( | |
| batch_size * num_images_per_prompt, seq_len, -1 | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| return prompt_embeds | |
| def decode_latents(self, latents): | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| image = self.vae.decode(latents).sample | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return image | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set( | |
| inspect.signature(self.scheduler.step).parameters.keys() | |
| ) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set( | |
| inspect.signature(self.scheduler.step).parameters.keys() | |
| ) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor( | |
| shape, generator=generator, device=device, dtype=dtype | |
| ) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def encode_image(self, image, device, num_images_per_prompt): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if image.dtype == np.float32: | |
| image = (image * 255).astype(np.uint8) | |
| image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| image_embeds = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| return torch.zeros_like(image_embeds), image_embeds | |
| def encode_image_latents(self, image, device, num_images_per_prompt): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| image = torch.from_numpy(image).unsqueeze(0).permute(0, 3, 1, 2).to(device=device) # [1, 3, H, W] | |
| image = 2 * image - 1 | |
| image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False) | |
| image = image.to(dtype=dtype) | |
| posterior = self.vae.encode(image).latent_dist | |
| latents = posterior.sample() * self.vae.config.scaling_factor # [B, C, H, W] | |
| latents = latents.repeat_interleave(num_images_per_prompt, dim=0) | |
| return torch.zeros_like(latents), latents | |
| def __call__( | |
| self, | |
| prompt: str = "", | |
| image: Optional[np.ndarray] = None, | |
| height: int = 256, | |
| width: int = 256, | |
| elevation: float = 0, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.0, | |
| negative_prompt: str = "", | |
| num_images_per_prompt: int = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| output_type: Optional[str] = "numpy", # pil, numpy, latents | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| num_frames: int = 4, | |
| device=torch.device("cuda:0"), | |
| ): | |
| self.unet = self.unet.to(device=device) | |
| self.vae = self.vae.to(device=device) | |
| self.text_encoder = self.text_encoder.to(device=device) | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # imagedream variant | |
| if image is not None: | |
| assert isinstance(image, np.ndarray) and image.dtype == np.float32 | |
| self.image_encoder = self.image_encoder.to(device=device) | |
| image_embeds_neg, image_embeds_pos = self.encode_image(image, device, num_images_per_prompt) | |
| image_latents_neg, image_latents_pos = self.encode_image_latents(image, device, num_images_per_prompt) | |
| _prompt_embeds = self._encode_prompt( | |
| prompt=prompt, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| ) # type: ignore | |
| prompt_embeds_neg, prompt_embeds_pos = _prompt_embeds.chunk(2) | |
| # Prepare latent variables | |
| actual_num_frames = num_frames if image is None else num_frames + 1 | |
| latents: torch.Tensor = self.prepare_latents( | |
| actual_num_frames * num_images_per_prompt, | |
| 4, | |
| height, | |
| width, | |
| prompt_embeds_pos.dtype, | |
| device, | |
| generator, | |
| None, | |
| ) | |
| if image is not None: | |
| camera = get_camera(num_frames, elevation=elevation, extra_view=True).to(dtype=latents.dtype, device=device) | |
| else: | |
| camera = get_camera(num_frames, elevation=elevation, extra_view=False).to(dtype=latents.dtype, device=device) | |
| camera = camera.repeat_interleave(num_images_per_prompt, dim=0) | |
| # Prepare extra step kwargs. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| multiplier = 2 if do_classifier_free_guidance else 1 | |
| context = torch.cat([prompt_embeds_neg] * actual_num_frames + [prompt_embeds_pos] * actual_num_frames) | |
| camera = torch.cat([camera] * multiplier) | |
| if image is not None: | |
| ip = torch.cat([image_embeds_neg] * actual_num_frames + [image_embeds_pos] * actual_num_frames) | |
| ip_img = torch.cat([image_latents_neg] + [image_latents_pos]) # no repeat | |
| # Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * multiplier) | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| unet_inputs = { | |
| 'x': latent_model_input, | |
| 'timesteps': torch.tensor([t] * actual_num_frames * multiplier, dtype=latent_model_input.dtype, device=device), | |
| 'context': context, | |
| 'num_frames': actual_num_frames, | |
| 'camera': camera, | |
| } | |
| if image is not None: | |
| unet_inputs['ip'] = ip | |
| unet_inputs['ip_img'] = ip_img | |
| # predict the noise residual | |
| noise_pred = self.unet(**unet_inputs) | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents: torch.Tensor = self.scheduler.step( | |
| noise_pred, t, latents, **extra_step_kwargs, return_dict=False | |
| )[0] | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
| ): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) # type: ignore | |
| # Post-processing | |
| if output_type == "latent": | |
| image = latents | |
| elif output_type == "pil": | |
| image = self.decode_latents(latents) | |
| image = self.numpy_to_pil(image) | |
| else: # numpy | |
| image = self.decode_latents(latents) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| return image |