Update with new layout
Browse files
app.py
CHANGED
|
@@ -5,133 +5,99 @@ from transformers.models.deberta.modeling_deberta import ContextPooler
|
|
| 5 |
from transformers import pipeline
|
| 6 |
import torch.nn as nn
|
| 7 |
|
| 8 |
-
# Model
|
| 9 |
BASE_MODEL = "microsoft/mdeberta-v3-base"
|
| 10 |
SENT_SUBJ_MODEL = "MatteoFasulo/mdeberta-v3-base-subjectivity-sentiment-multilingual-no-arabic"
|
| 11 |
SUBJ_ONLY_MODEL = "MatteoFasulo/mdeberta-v3-base-subjectivity-multilingual-no-arabic"
|
| 12 |
-
THRESHOLD = 0.65
|
| 13 |
|
| 14 |
-
# Custom model
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
self
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
)
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
#
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
attention_mask=inputs.get('attention_mask')
|
| 106 |
-
)
|
| 107 |
-
probs2 = torch.softmax(logits2, dim=1)[0]
|
| 108 |
-
|
| 109 |
-
# Formatting
|
| 110 |
-
output = []
|
| 111 |
-
output.append("Sentiment Scores (sent-subj model):")
|
| 112 |
-
output.append(f"- Positive: {pos:.2%}")
|
| 113 |
-
output.append(f"- Neutral: {neu:.2%}")
|
| 114 |
-
output.append(f"- Negative: {neg:.2%}\n")
|
| 115 |
-
|
| 116 |
-
output.append(f"Subjectivity (with sentiment) - OBJ: {probs1[0]:.2%}, SUBJ: {probs1[1]:.2%}")
|
| 117 |
-
output.append(f"Subjectivity (text only) - OBJ: {probs2[0]:.2%}, SUBJ: {probs2[1]:.2%}")
|
| 118 |
-
|
| 119 |
-
return "\n".join(output)
|
| 120 |
-
|
| 121 |
-
# Build Gradio interface
|
| 122 |
-
demo = gr.Interface(
|
| 123 |
-
fn=predict_subjectivity,
|
| 124 |
-
inputs=gr.Textbox(
|
| 125 |
-
label='Input sentence',
|
| 126 |
-
placeholder='Enter a sentence from a news article',
|
| 127 |
-
info='Paste a sentence from a news article to determine subjectivity'
|
| 128 |
-
),
|
| 129 |
-
outputs=gr.Textbox(
|
| 130 |
-
label='Results',
|
| 131 |
-
info='Sentiment & dual-model subjectivity probabilities'
|
| 132 |
-
),
|
| 133 |
-
title='Dual-Model Subjectivity Detection',
|
| 134 |
-
description='Outputs sentiment scores and class probabilities from two subjectivity models.'
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
-
demo.launch()
|
|
|
|
| 5 |
from transformers import pipeline
|
| 6 |
import torch.nn as nn
|
| 7 |
|
| 8 |
+
# -- Model definitions
|
| 9 |
BASE_MODEL = "microsoft/mdeberta-v3-base"
|
| 10 |
SENT_SUBJ_MODEL = "MatteoFasulo/mdeberta-v3-base-subjectivity-sentiment-multilingual-no-arabic"
|
| 11 |
SUBJ_ONLY_MODEL = "MatteoFasulo/mdeberta-v3-base-subjectivity-multilingual-no-arabic"
|
|
|
|
| 12 |
|
| 13 |
+
# -- Custom model builder
|
| 14 |
+
from functools import partial
|
| 15 |
+
|
| 16 |
+
def build_custom_model(sentiment_dim=0):
|
| 17 |
+
class CustomModel(PreTrainedModel):
|
| 18 |
+
config_class = DebertaV2Config
|
| 19 |
+
def __init__(self, config, *args, **kwargs):
|
| 20 |
+
super().__init__(config, *args, **kwargs)
|
| 21 |
+
self.deberta = DebertaV2Model(config)
|
| 22 |
+
self.pooler = ContextPooler(config)
|
| 23 |
+
self.dropout = nn.Dropout(0.1)
|
| 24 |
+
hidden_dim = self.pooler.output_dim + sentiment_dim
|
| 25 |
+
self.classifier = nn.Linear(hidden_dim, config.num_labels)
|
| 26 |
+
def forward(self, input_ids, attention_mask=None, **sent_kwargs):
|
| 27 |
+
x = self.deberta(input_ids=input_ids, attention_mask=attention_mask)[0]
|
| 28 |
+
pooled = self.pooler(x)
|
| 29 |
+
if sentiment_dim:
|
| 30 |
+
sent_feats = torch.stack((sent_kwargs['positive'], sent_kwargs['neutral'], sent_kwargs['negative']), dim=1)
|
| 31 |
+
pooled = torch.cat((pooled, sent_feats), dim=1)
|
| 32 |
+
return self.classifier(self.dropout(pooled))
|
| 33 |
+
return CustomModel
|
| 34 |
+
|
| 35 |
+
# -- Load models and tokenizer
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 37 |
+
|
| 38 |
+
# sentiment+subjectivity
|
| 39 |
+
cfg1 = DebertaV2Config.from_pretrained(SENT_SUBJ_MODEL, num_labels=2, id2label={0:'OBJ',1:'SUBJ'}, label2id={'OBJ':0,'SUBJ':1})
|
| 40 |
+
Model1Cls = build_custom_model(sentiment_dim=3)
|
| 41 |
+
model1 = Model1Cls.from_pretrained(SENT_SUBJ_MODEL, config=cfg1, ignore_mismatched_sizes=True)
|
| 42 |
+
|
| 43 |
+
# subjectivity-only
|
| 44 |
+
cfg2 = DebertaV2Config.from_pretrained(SUBJ_ONLY_MODEL, num_labels=2, id2label={0:'OBJ',1:'SUBJ'}, label2id={'OBJ':0,'SUBJ':1})
|
| 45 |
+
Model2Cls = build_custom_model(sentiment_dim=0)
|
| 46 |
+
model2 = Model2Cls.from_pretrained(SUBJ_ONLY_MODEL, config=cfg2)
|
| 47 |
+
|
| 48 |
+
# sentiment pipeline
|
| 49 |
+
sentiment_pipe = pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment", tokenizer="cardiffnlp/twitter-xlm-roberta-base-sentiment", top_k=None)
|
| 50 |
+
|
| 51 |
+
def get_sentiment_scores(text):
|
| 52 |
+
out = sentiment_pipe(text)[0]
|
| 53 |
+
return {list(d.keys())[0]: list(d.values())[0] for d in out}
|
| 54 |
+
|
| 55 |
+
# -- Prediction logic
|
| 56 |
+
def analyze(text):
|
| 57 |
+
# Tokenize
|
| 58 |
+
inputs = tokenizer(text, truncation=True, padding=True, max_length=256, return_tensors='pt')
|
| 59 |
+
# Sentiment
|
| 60 |
+
scores = get_sentiment_scores(text)
|
| 61 |
+
pos, neu, neg = scores['positive'], scores['neutral'], scores['negative']
|
| 62 |
+
# Model1
|
| 63 |
+
logits1 = model1(input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, positive=torch.tensor([pos]), neutral=torch.tensor([neu]), negative=torch.tensor([neg]))
|
| 64 |
+
p1 = torch.softmax(logits1, dim=1)[0]
|
| 65 |
+
# Model2
|
| 66 |
+
logits2 = model2(input_ids=inputs.input_ids, attention_mask=inputs.attention_mask)
|
| 67 |
+
p2 = torch.softmax(logits2, dim=1)[0]
|
| 68 |
+
# Build results
|
| 69 |
+
return {
|
| 70 |
+
'Positive': f"{pos:.2%}", 'Neutral': f"{neu:.2%}", 'Negative': f"{neg:.2%}",
|
| 71 |
+
'Sent-Subj OBJ': f"{p1[0]:.2%}", 'Sent-Subj SUBJ': f"{p1[1]:.2%}",
|
| 72 |
+
'TextOnly OBJ': f"{p2[0]:.2%}", 'TextOnly SUBJ': f"{p2[1]:.2%}"
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
# -- Build Gradio Dashboard with Blocks
|
| 76 |
+
dark_theme = gr.themes.Dark()
|
| 77 |
+
|
| 78 |
+
with gr.Blocks(theme=dark_theme, css="""
|
| 79 |
+
#result_table td { padding: 8px; font-size: 1rem; }
|
| 80 |
+
#header { text-align: center; font-size: 2rem; font-weight: bold; margin-bottom: 10px; }
|
| 81 |
+
""") as demo:
|
| 82 |
+
gr.Markdown("<div id='header'>π Advanced Subjectivity & Sentiment Dashboard π</div>")
|
| 83 |
+
with gr.Row():
|
| 84 |
+
txt = gr.Textbox(label="Enter text to analyze", placeholder="Paste news sentence here...", lines=2)
|
| 85 |
+
btn = gr.Button("Analyze π", variant="primary")
|
| 86 |
+
with gr.Tabs():
|
| 87 |
+
with gr.TabItem("Overview π"):
|
| 88 |
+
chart = gr.BarPlot(x="category", y="value", label="Results", elem_id="result_chart")
|
| 89 |
+
with gr.TabItem("Raw Scores π"):
|
| 90 |
+
table = gr.Dataframe(headers=["Metric", "Value"], datatype=["str","str"], interactive=False, elem_id="result_table")
|
| 91 |
+
with gr.TabItem("About βΉοΈ"):
|
| 92 |
+
gr.Markdown("This dashboard uses two DeBERTa-based models (with and without sentiment integration) to detect subjectivity, alongside sentiment scores from an XLM-RoBERTa model.")
|
| 93 |
+
gr.Markdown("**Threshold** for subjective classification is adjustable in code (default: 0.65). Feel free to fork and customize! π")
|
| 94 |
+
# Link inputs to outputs
|
| 95 |
+
btn.click(fn=analyze, inputs=txt, outputs=[chart, table])
|
| 96 |
+
# Add confetti effect on button click
|
| 97 |
+
btn.js_on_event("click", {
|
| 98 |
+
"type": "confetti",
|
| 99 |
+
"props": {"particleCount": 100, "spread": 60}
|
| 100 |
+
})
|
| 101 |
+
|
| 102 |
+
# -- Launch
|
| 103 |
+
demo.queue().launch(server_name="0.0.0.0", share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|