Dashboard-fixes (#1)
Browse files- feat: enhanced GUI (63daa8ce6608610cb201ff8faeb918a65aa58d94)
- bug: removed share=True (ed1a96ef44b5680c941da2d9e14e98e4314f30a2)
app.py
CHANGED
|
@@ -16,109 +16,102 @@ examples = [
|
|
| 16 |
["Boxing Day ambush & flagship attack Putin has long tried to downplay the true losses his army has faced in the Black Sea."],
|
| 17 |
]
|
| 18 |
|
| 19 |
-
# Custom model class for combining sentiment analysis with subjectivity detection
|
| 20 |
class CustomModel(PreTrainedModel):
|
| 21 |
config_class = DebertaV2Config
|
| 22 |
-
|
| 23 |
def __init__(self, config, sentiment_dim=3, num_labels=2, *args, **kwargs):
|
| 24 |
super().__init__(config, *args, **kwargs)
|
| 25 |
self.deberta = DebertaV2Model(config)
|
| 26 |
self.pooler = ContextPooler(config)
|
| 27 |
output_dim = self.pooler.output_dim
|
| 28 |
self.dropout = nn.Dropout(0.1)
|
| 29 |
-
|
| 30 |
self.classifier = nn.Linear(output_dim + sentiment_dim, num_labels)
|
| 31 |
|
| 32 |
def forward(self, input_ids, positive, neutral, negative, token_type_ids=None, attention_mask=None, labels=None):
|
| 33 |
outputs = self.deberta(input_ids=input_ids, attention_mask=attention_mask)
|
| 34 |
-
|
| 35 |
encoder_layer = outputs[0]
|
| 36 |
pooled_output = self.pooler(encoder_layer)
|
| 37 |
-
|
| 38 |
-
# Sentiment features as a single tensor
|
| 39 |
-
sentiment_features = torch.stack((positive, neutral, negative), dim=1) # Shape: (batch_size, 3)
|
| 40 |
-
|
| 41 |
-
# Combine CLS embedding with sentiment features
|
| 42 |
combined_features = torch.cat((pooled_output, sentiment_features), dim=1)
|
| 43 |
-
|
| 44 |
-
# Classification head
|
| 45 |
logits = self.classifier(self.dropout(combined_features))
|
| 46 |
-
|
| 47 |
return {'logits': logits}
|
| 48 |
|
| 49 |
-
# Load the pre-trained tokenizer
|
| 50 |
def load_tokenizer(model_name: str):
|
| 51 |
return AutoTokenizer.from_pretrained(model_name)
|
| 52 |
|
| 53 |
-
|
| 54 |
def load_model(model_name: str):
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
label2id={'OBJ': 0, 'SUBJ': 1},
|
| 62 |
-
output_attentions=False,
|
| 63 |
-
output_hidden_states=False
|
| 64 |
-
)
|
| 65 |
-
|
| 66 |
-
model = CustomModel(config=config, sentiment_dim=3, num_labels=2).from_pretrained(model_name)
|
| 67 |
-
|
| 68 |
-
else:
|
| 69 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
| 70 |
-
model_name,
|
| 71 |
-
num_labels=2,
|
| 72 |
-
id2label={0: 'OBJ', 1: 'SUBJ'},
|
| 73 |
-
label2id={'OBJ': 0, 'SUBJ': 1},
|
| 74 |
-
output_attentions=False,
|
| 75 |
-
output_hidden_states=False
|
| 76 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
# Get sentiment values using a pre-trained sentiment analysis model
|
| 81 |
def get_sentiment_values(text: str):
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
def analyze(text):
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
|
| 91 |
tokenizer = load_tokenizer(model_card)
|
| 92 |
model_with_sentiment = load_model(sentiment_model)
|
| 93 |
model_without_sentiment = load_model(subjectivity_only_model)
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
| 99 |
-
outputs_base = model_without_sentiment(**inputs)
|
| 100 |
logits_base = outputs_base.get('logits')
|
| 101 |
-
# Calculate probabilities using softmax
|
| 102 |
prob_base = torch.nn.functional.softmax(logits_base, dim=1)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
|
| 105 |
-
positive =
|
| 106 |
-
neutral =
|
| 107 |
-
negative =
|
| 108 |
-
|
| 109 |
-
# Convert sentiment values to tensors
|
| 110 |
-
inputs['positive'] = torch.tensor(positive).unsqueeze(0)
|
| 111 |
-
inputs['neutral'] = torch.tensor(neutral).unsqueeze(0)
|
| 112 |
-
inputs['negative'] = torch.tensor(negative).unsqueeze(0)
|
| 113 |
-
|
| 114 |
-
# Get the sentiment model outputs
|
| 115 |
-
outputs_sentiment = model_with_sentiment(**inputs)
|
| 116 |
-
logits_sentiment = outputs_sentiment.get('logits')
|
| 117 |
|
| 118 |
-
|
|
|
|
|
|
|
| 119 |
prob_sentiment = torch.nn.functional.softmax(logits_sentiment, dim=1)[0]
|
| 120 |
|
| 121 |
-
# Prepare data for the Dataframe (string values)
|
| 122 |
table_data = [
|
| 123 |
["Positive", f"{positive:.2%}"],
|
| 124 |
["Neutral", f"{neutral:.2%}"],
|
|
@@ -128,31 +121,70 @@ def analyze(text):
|
|
| 128 |
["TextOnly OBJ", f"{prob_base[0]:.2%}"],
|
| 129 |
["TextOnly SUBJ", f"{prob_base[1]:.2%}"]
|
| 130 |
]
|
| 131 |
-
|
| 132 |
return table_data
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
with gr.Tabs():
|
| 141 |
with gr.TabItem("Raw Scores π"):
|
| 142 |
-
table = gr.Dataframe(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
with gr.TabItem("About βΉοΈ"):
|
| 144 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
with gr.Row():
|
| 146 |
gr.Markdown("### Examples:")
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
| 156 |
btn.click(fn=analyze, inputs=txt, outputs=[table])
|
| 157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
demo.queue().launch()
|
|
|
|
| 16 |
["Boxing Day ambush & flagship attack Putin has long tried to downplay the true losses his army has faced in the Black Sea."],
|
| 17 |
]
|
| 18 |
|
|
|
|
| 19 |
class CustomModel(PreTrainedModel):
|
| 20 |
config_class = DebertaV2Config
|
|
|
|
| 21 |
def __init__(self, config, sentiment_dim=3, num_labels=2, *args, **kwargs):
|
| 22 |
super().__init__(config, *args, **kwargs)
|
| 23 |
self.deberta = DebertaV2Model(config)
|
| 24 |
self.pooler = ContextPooler(config)
|
| 25 |
output_dim = self.pooler.output_dim
|
| 26 |
self.dropout = nn.Dropout(0.1)
|
|
|
|
| 27 |
self.classifier = nn.Linear(output_dim + sentiment_dim, num_labels)
|
| 28 |
|
| 29 |
def forward(self, input_ids, positive, neutral, negative, token_type_ids=None, attention_mask=None, labels=None):
|
| 30 |
outputs = self.deberta(input_ids=input_ids, attention_mask=attention_mask)
|
|
|
|
| 31 |
encoder_layer = outputs[0]
|
| 32 |
pooled_output = self.pooler(encoder_layer)
|
| 33 |
+
sentiment_features = torch.stack((positive, neutral, negative), dim=1).to(pooled_output.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
combined_features = torch.cat((pooled_output, sentiment_features), dim=1)
|
|
|
|
|
|
|
| 35 |
logits = self.classifier(self.dropout(combined_features))
|
|
|
|
| 36 |
return {'logits': logits}
|
| 37 |
|
|
|
|
| 38 |
def load_tokenizer(model_name: str):
|
| 39 |
return AutoTokenizer.from_pretrained(model_name)
|
| 40 |
|
| 41 |
+
load_model_cache = {}
|
| 42 |
def load_model(model_name: str):
|
| 43 |
+
if model_name not in load_model_cache:
|
| 44 |
+
print(f"Loading model: {model_name}")
|
| 45 |
+
if 'sentiment' in model_name:
|
| 46 |
+
config = DebertaV2Config.from_pretrained(
|
| 47 |
+
model_name, num_labels=2, id2label={0: 'OBJ', 1: 'SUBJ'}, label2id={'OBJ': 0, 'SUBJ': 1},
|
| 48 |
+
output_attentions=False, output_hidden_states=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
)
|
| 50 |
+
model_instance = CustomModel(config=config, sentiment_dim=3, num_labels=2).from_pretrained(model_name)
|
| 51 |
+
else:
|
| 52 |
+
model_instance = AutoModelForSequenceClassification.from_pretrained(
|
| 53 |
+
model_name, num_labels=2, id2label={0: 'OBJ', 1: 'SUBJ'}, label2id={'OBJ': 0, 'SUBJ': 1},
|
| 54 |
+
output_attentions=False, output_hidden_states=False
|
| 55 |
+
)
|
| 56 |
+
load_model_cache[model_name] = model_instance
|
| 57 |
+
return load_model_cache[model_name]
|
| 58 |
|
| 59 |
+
sentiment_pipeline_cache = None #
|
|
|
|
|
|
|
| 60 |
def get_sentiment_values(text: str):
|
| 61 |
+
global sentiment_pipeline_cache
|
| 62 |
+
if sentiment_pipeline_cache is None:
|
| 63 |
+
print("Loading sentiment pipeline...")
|
| 64 |
+
sentiment_pipeline_cache = pipeline(
|
| 65 |
+
"sentiment-analysis",
|
| 66 |
+
model="cardiffnlp/twitter-xlm-roberta-base-sentiment",
|
| 67 |
+
tokenizer="cardiffnlp/twitter-xlm-roberta-base-sentiment",
|
| 68 |
+
top_k=None
|
| 69 |
+
)
|
| 70 |
+
sentiments_output = sentiment_pipeline_cache(text)
|
| 71 |
+
if sentiments_output and isinstance(sentiments_output, list) and sentiments_output[0]:
|
| 72 |
+
sentiments = sentiments_output[0]
|
| 73 |
+
return {s['label'].lower(): s['score'] for s in sentiments}
|
| 74 |
+
return {}
|
| 75 |
+
|
| 76 |
|
| 77 |
def analyze(text):
|
| 78 |
+
if not text or not text.strip():
|
| 79 |
+
empty_data = [
|
| 80 |
+
["Positive", ""], ["Neutral", ""], ["Negative", ""],
|
| 81 |
+
["Sent-Subj OBJ", ""], ["Sent-Subj SUBJ", ""],
|
| 82 |
+
["TextOnly OBJ", ""], ["TextOnly SUBJ", ""]
|
| 83 |
+
]
|
| 84 |
+
return empty_data
|
| 85 |
|
| 86 |
+
sentiment_values = get_sentiment_values(text)
|
| 87 |
tokenizer = load_tokenizer(model_card)
|
| 88 |
model_with_sentiment = load_model(sentiment_model)
|
| 89 |
model_without_sentiment = load_model(subjectivity_only_model)
|
| 90 |
|
| 91 |
+
inputs_dict = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors='pt')
|
| 92 |
+
|
| 93 |
+
device = next(model_without_sentiment.parameters()).device
|
| 94 |
+
inputs_dict_on_device = {k: v.to(device) for k, v in inputs_dict.items()}
|
| 95 |
|
| 96 |
+
outputs_base = model_without_sentiment(**inputs_dict_on_device)
|
|
|
|
| 97 |
logits_base = outputs_base.get('logits')
|
|
|
|
| 98 |
prob_base = torch.nn.functional.softmax(logits_base, dim=1)[0]
|
| 99 |
+
|
| 100 |
+
positive = sentiment_values.get('positive', 0.0)
|
| 101 |
+
neutral = sentiment_values.get('neutral', 0.0)
|
| 102 |
+
negative = sentiment_values.get('negative', 0.0)
|
| 103 |
+
|
| 104 |
|
| 105 |
+
current_inputs_for_sentiment_model = inputs_dict_on_device.copy()
|
| 106 |
+
current_inputs_for_sentiment_model['positive'] = torch.tensor(positive, device=device).unsqueeze(0).float()
|
| 107 |
+
current_inputs_for_sentiment_model['neutral'] = torch.tensor(neutral, device=device).unsqueeze(0).float()
|
| 108 |
+
current_inputs_for_sentiment_model['negative'] = torch.tensor(negative, device=device).unsqueeze(0).float()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
+
|
| 111 |
+
outputs_sentiment = model_with_sentiment(**current_inputs_for_sentiment_model)
|
| 112 |
+
logits_sentiment = outputs_sentiment.get('logits')
|
| 113 |
prob_sentiment = torch.nn.functional.softmax(logits_sentiment, dim=1)[0]
|
| 114 |
|
|
|
|
| 115 |
table_data = [
|
| 116 |
["Positive", f"{positive:.2%}"],
|
| 117 |
["Neutral", f"{neutral:.2%}"],
|
|
|
|
| 121 |
["TextOnly OBJ", f"{prob_base[0]:.2%}"],
|
| 122 |
["TextOnly SUBJ", f"{prob_base[1]:.2%}"]
|
| 123 |
]
|
|
|
|
| 124 |
return table_data
|
| 125 |
|
| 126 |
+
def load_default_example_on_startup():
|
| 127 |
+
print("Loading default example on startup...")
|
| 128 |
+
if examples and examples[0] and isinstance(examples[0], list) and examples[0]:
|
| 129 |
+
default_text = examples[0][0]
|
| 130 |
+
default_analysis_results = analyze(default_text)
|
| 131 |
+
return default_text, default_analysis_results
|
| 132 |
+
print("Warning: No valid default example found. Loading empty.")
|
| 133 |
+
empty_text = ""
|
| 134 |
+
empty_results = analyze(empty_text)
|
| 135 |
+
return empty_text, empty_results
|
| 136 |
+
|
| 137 |
+
with gr.Blocks(theme=gr.themes.Ocean(), title="Subjectivity & Sentiment Dashboard") as demo:
|
| 138 |
+
gr.Markdown("# π Subjectivity & Sentiment Analysis Dashboard π")
|
| 139 |
+
|
| 140 |
+
with gr.Column():
|
| 141 |
+
txt = gr.Textbox(
|
| 142 |
+
label="Enter text to analyze",
|
| 143 |
+
placeholder="Paste news sentence here...",
|
| 144 |
+
lines=2,
|
| 145 |
+
)
|
| 146 |
+
with gr.Row():
|
| 147 |
+
gr.Column(scale=1, min_width=0)
|
| 148 |
+
btn = gr.Button(
|
| 149 |
+
"Analyze π",
|
| 150 |
+
variant="primary",
|
| 151 |
+
size="md",
|
| 152 |
+
scale=0
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
with gr.Tabs():
|
| 156 |
with gr.TabItem("Raw Scores π"):
|
| 157 |
+
table = gr.Dataframe(
|
| 158 |
+
headers=["Metric", "Value"],
|
| 159 |
+
datatype=["str", "str"],
|
| 160 |
+
interactive=False
|
| 161 |
+
)
|
| 162 |
with gr.TabItem("About βΉοΈ"):
|
| 163 |
+
gr.Markdown(
|
| 164 |
+
"This dashboard uses two DeBERTa-based models (with and without sentiment integration) "
|
| 165 |
+
"to detect subjectivity, alongside sentiment scores from an XLM-RoBERTa model."
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
with gr.Row():
|
| 169 |
gr.Markdown("### Examples:")
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
gr.Examples(
|
| 173 |
+
examples=examples,
|
| 174 |
+
inputs=txt,
|
| 175 |
+
outputs=[table],
|
| 176 |
+
fn=analyze,
|
| 177 |
+
label="Click an example to analyze",
|
| 178 |
+
cache_examples=True,
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
btn.click(fn=analyze, inputs=txt, outputs=[table])
|
| 182 |
|
| 183 |
+
|
| 184 |
+
demo.load(
|
| 185 |
+
fn=load_default_example_on_startup,
|
| 186 |
+
inputs=None,
|
| 187 |
+
outputs=[txt, table]
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
demo.queue().launch()
|