Commit
·
e91e5d5
1
Parent(s):
7e9f859
Enhance subjectivity prediction with detailed output and update Gradio interface
Browse files
app.py
CHANGED
|
@@ -7,7 +7,8 @@ import torch.nn as nn
|
|
| 7 |
|
| 8 |
# Define the model and tokenizer
|
| 9 |
model_card = "microsoft/mdeberta-v3-base"
|
| 10 |
-
finetuned_model = "MatteoFasulo/mdeberta-v3-base-subjectivity-sentiment-multilingual"
|
|
|
|
| 11 |
|
| 12 |
# Custom model class for combining sentiment analysis with subjectivity detection
|
| 13 |
class CustomModel(PreTrainedModel):
|
|
@@ -22,7 +23,7 @@ class CustomModel(PreTrainedModel):
|
|
| 22 |
|
| 23 |
self.classifier = nn.Linear(output_dim + sentiment_dim, num_labels)
|
| 24 |
|
| 25 |
-
def forward(self, input_ids, positive, neutral, negative, attention_mask=None, labels=None):
|
| 26 |
outputs = self.deberta(input_ids=input_ids, attention_mask=attention_mask)
|
| 27 |
|
| 28 |
encoder_layer = outputs[0]
|
|
@@ -66,24 +67,48 @@ def get_sentiment_values(text: str):
|
|
| 66 |
sentiments = pipe(text)[0]
|
| 67 |
return {k:v for k,v in [(list(sentiment.values())[0], list(sentiment.values())[1]) for sentiment in sentiments]}
|
| 68 |
|
| 69 |
-
#
|
| 70 |
def predict_subjectivity(text):
|
| 71 |
sentiment_values = get_sentiment_values(text)
|
| 72 |
|
| 73 |
model = load_model(model_card, finetuned_model)
|
| 74 |
tokenizer = load_tokenizer(model_card)
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
inputs = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors='pt')
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
outputs = model(**inputs)
|
| 79 |
logits = outputs.get('logits')
|
| 80 |
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
predicted_class = model.config.id2label[predicted_class_idx]
|
| 83 |
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
#
|
| 87 |
demo = gr.Interface(
|
| 88 |
fn=predict_subjectivity,
|
| 89 |
inputs=gr.Textbox(
|
|
@@ -91,14 +116,12 @@ demo = gr.Interface(
|
|
| 91 |
placeholder='Enter a sentence from a news article',
|
| 92 |
info='Paste a sentence from a news article to determine if it is subjective or objective.'
|
| 93 |
),
|
| 94 |
-
outputs=gr.
|
| 95 |
-
label="
|
| 96 |
-
info="
|
| 97 |
),
|
| 98 |
title='Subjectivity Detection',
|
| 99 |
-
description='Detect if a sentence is subjective or objective using a pre-trained model.'
|
| 100 |
-
theme='huggingface',
|
| 101 |
)
|
| 102 |
|
| 103 |
-
|
| 104 |
-
demo.launch(share=True)
|
|
|
|
| 7 |
|
| 8 |
# Define the model and tokenizer
|
| 9 |
model_card = "microsoft/mdeberta-v3-base"
|
| 10 |
+
finetuned_model = "MatteoFasulo/mdeberta-v3-base-subjectivity-sentiment-multilingual-no-arabic"
|
| 11 |
+
THRESHOLD = 0.65
|
| 12 |
|
| 13 |
# Custom model class for combining sentiment analysis with subjectivity detection
|
| 14 |
class CustomModel(PreTrainedModel):
|
|
|
|
| 23 |
|
| 24 |
self.classifier = nn.Linear(output_dim + sentiment_dim, num_labels)
|
| 25 |
|
| 26 |
+
def forward(self, input_ids, positive, neutral, negative, token_type_ids=None, attention_mask=None, labels=None):
|
| 27 |
outputs = self.deberta(input_ids=input_ids, attention_mask=attention_mask)
|
| 28 |
|
| 29 |
encoder_layer = outputs[0]
|
|
|
|
| 67 |
sentiments = pipe(text)[0]
|
| 68 |
return {k:v for k,v in [(list(sentiment.values())[0], list(sentiment.values())[1]) for sentiment in sentiments]}
|
| 69 |
|
| 70 |
+
# Modify the predict_subjectivity function to return additional information
|
| 71 |
def predict_subjectivity(text):
|
| 72 |
sentiment_values = get_sentiment_values(text)
|
| 73 |
|
| 74 |
model = load_model(model_card, finetuned_model)
|
| 75 |
tokenizer = load_tokenizer(model_card)
|
| 76 |
|
| 77 |
+
positive = sentiment_values['positive']
|
| 78 |
+
neutral = sentiment_values['neutral']
|
| 79 |
+
negative = sentiment_values['negative']
|
| 80 |
+
|
| 81 |
inputs = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors='pt')
|
| 82 |
+
inputs['positive'] = torch.tensor(positive).unsqueeze(0)
|
| 83 |
+
inputs['neutral'] = torch.tensor(neutral).unsqueeze(0)
|
| 84 |
+
inputs['negative'] = torch.tensor(negative).unsqueeze(0)
|
| 85 |
|
| 86 |
outputs = model(**inputs)
|
| 87 |
logits = outputs.get('logits')
|
| 88 |
|
| 89 |
+
# Calculate probabilities using softmax
|
| 90 |
+
probabilities = torch.nn.functional.softmax(logits, dim=1)
|
| 91 |
+
obj_prob, subj_prob = probabilities[0].tolist()
|
| 92 |
+
|
| 93 |
+
# Predict the class given the decision threshold
|
| 94 |
+
predicted_class_idx = 1 if subj_prob >= THRESHOLD else 0
|
| 95 |
predicted_class = model.config.id2label[predicted_class_idx]
|
| 96 |
|
| 97 |
+
# Format the output
|
| 98 |
+
result = f"""Prediction: {predicted_class}
|
| 99 |
+
|
| 100 |
+
Class Probabilities:
|
| 101 |
+
- Objective: {obj_prob:.2%}
|
| 102 |
+
- Subjective: {subj_prob:.2%}
|
| 103 |
+
|
| 104 |
+
Sentiment Scores:
|
| 105 |
+
- Positive: {positive:.2%}
|
| 106 |
+
- Neutral: {neutral:.2%}
|
| 107 |
+
- Negative: {negative:.2%}"""
|
| 108 |
+
|
| 109 |
+
return result
|
| 110 |
|
| 111 |
+
# Update the Gradio interface
|
| 112 |
demo = gr.Interface(
|
| 113 |
fn=predict_subjectivity,
|
| 114 |
inputs=gr.Textbox(
|
|
|
|
| 116 |
placeholder='Enter a sentence from a news article',
|
| 117 |
info='Paste a sentence from a news article to determine if it is subjective or objective.'
|
| 118 |
),
|
| 119 |
+
outputs=gr.Textbox(
|
| 120 |
+
label="Results",
|
| 121 |
+
info="Detailed analysis including subjectivity prediction, class probabilities, and sentiment scores."
|
| 122 |
),
|
| 123 |
title='Subjectivity Detection',
|
| 124 |
+
description='Detect if a sentence is subjective or objective using a pre-trained model.'
|
|
|
|
| 125 |
)
|
| 126 |
|
| 127 |
+
demo.launch()
|
|
|