Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from gradio_pdf import PDF | |
| from qdrant_client import models, QdrantClient | |
| from sentence_transformers import SentenceTransformer | |
| from PyPDF2 import PdfReader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.callbacks.manager import CallbackManager | |
| from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
| # from langchain.llms import LlamaCpp | |
| from langchain.vectorstores import Qdrant | |
| from qdrant_client.http import models | |
| # from langchain.llms import CTransformers | |
| from ctransformers import AutoModelForCausalLM | |
| # loading the embedding model - | |
| encoder = SentenceTransformer('jinaai/jina-embedding-b-en-v1') | |
| print("embedding model loaded.............................") | |
| print("####################################################") | |
| # loading the LLM | |
| callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) | |
| print("loading the LLM......................................") | |
| # llm = LlamaCpp( | |
| # model_path="TheBloke/Llama-2-7B-Chat-GGUF/llama-2-7b-chat.Q8_0.gguf", | |
| # n_ctx=2048, | |
| # f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls | |
| # callback_manager=callback_manager, | |
| # verbose=True, | |
| # ) | |
| llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-Chat-GGUF", | |
| model_file="llama-2-7b-chat.Q3_K_S.gguf", | |
| model_type="llama", | |
| temperature = 0.2, | |
| repetition_penalty = 1.5, | |
| max_new_tokens = 300, | |
| ) | |
| print("LLM loaded........................................") | |
| print("################################################################") | |
| # def get_chunks(text): | |
| # text_splitter = RecursiveCharacterTextSplitter( | |
| # # seperator = "\n", | |
| # chunk_size = 250, | |
| # chunk_overlap = 50, | |
| # length_function = len, | |
| # ) | |
| # chunks = text_splitter.split_text(text) | |
| # return chunks | |
| # pdf_path = './100 Weird Facts About the Human Body.pdf' | |
| # reader = PdfReader(pdf_path) | |
| # text = "" | |
| # num_of_pages = len(reader.pages) | |
| # for page in range(num_of_pages): | |
| # current_page = reader.pages[page] | |
| # text += current_page.extract_text() | |
| # chunks = get_chunks(text) | |
| # print(chunks) | |
| # print("Chunks are ready.....................................") | |
| # print("######################################################") | |
| # client = QdrantClient(path = "./db") | |
| # print("db created................................................") | |
| # print("#####################################################################") | |
| # client.recreate_collection( | |
| # collection_name="my_facts", | |
| # vectors_config=models.VectorParams( | |
| # size=encoder.get_sentence_embedding_dimension(), # Vector size is defined by used model | |
| # distance=models.Distance.COSINE, | |
| # ), | |
| # ) | |
| # print("Collection created........................................") | |
| # print("#########################################################") | |
| # li = [] | |
| # for i in range(len(chunks)): | |
| # li.append(i) | |
| # dic = zip(li, chunks) | |
| # dic= dict(dic) | |
| # client.upload_records( | |
| # collection_name="my_facts", | |
| # records=[ | |
| # models.Record( | |
| # id=idx, | |
| # vector=encoder.encode(dic[idx]).tolist(), | |
| # payload= {dic[idx][:5] : dic[idx]} | |
| # ) for idx in dic.keys() | |
| # ], | |
| # ) | |
| # print("Records uploaded........................................") | |
| # print("###########################################################") | |
| def chat(file, question): | |
| def get_chunks(text): | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| # seperator = "\n", | |
| chunk_size = 250, | |
| chunk_overlap = 50, | |
| length_function = len, | |
| ) | |
| chunks = text_splitter.split_text(text) | |
| return chunks | |
| pdf_path = file | |
| reader = PdfReader(pdf_path) | |
| text = "" | |
| num_of_pages = len(reader.pages) | |
| for page in range(num_of_pages): | |
| current_page = reader.pages[page] | |
| text += current_page.extract_text() | |
| chunks = get_chunks(text) | |
| # print(chunks) | |
| # print("Chunks are ready.....................................") | |
| # print("######################################################") | |
| client = QdrantClient(path = "./db") | |
| # print("db created................................................") | |
| # print("#####################################################################") | |
| client.recreate_collection( | |
| collection_name="my_facts", | |
| vectors_config=models.VectorParams( | |
| size=encoder.get_sentence_embedding_dimension(), # Vector size is defined by used model | |
| distance=models.Distance.COSINE, | |
| ), | |
| ) | |
| # print("Collection created........................................") | |
| # print("#########################################################") | |
| li = [] | |
| for i in range(len(chunks)): | |
| li.append(i) | |
| dic = zip(li, chunks) | |
| dic= dict(dic) | |
| client.upload_records( | |
| collection_name="my_facts", | |
| records=[ | |
| models.Record( | |
| id=idx, | |
| vector=encoder.encode(dic[idx]).tolist(), | |
| payload= {dic[idx][:5] : dic[idx]} | |
| ) for idx in dic.keys() | |
| ], | |
| ) | |
| # print("Records uploaded........................................") | |
| # print("###########################################################") | |
| hits = client.search( | |
| collection_name="my_facts", | |
| query_vector=encoder.encode(question).tolist(), | |
| limit=3 | |
| ) | |
| context = [] | |
| for hit in hits: | |
| context.append(list(hit.payload.values())[0]) | |
| context = context[0] + context[1] + context[2] | |
| system_prompt = """You are a helpful assistant, you will use the provided context to answer user questions. | |
| Read the given context before answering questions and think step by step. If you can not answer a user question based on | |
| the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question.""" | |
| B_INST, E_INST = "[INST]", "[/INST]" | |
| B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" | |
| SYSTEM_PROMPT = B_SYS + system_prompt + E_SYS | |
| instruction = f""" | |
| Context: {context} | |
| User: {question}""" | |
| prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST | |
| result = llm(prompt_template) | |
| return result | |
| screen = gr.Interface( | |
| fn = chat, | |
| inputs = [PDF(label="Upload a PDF", interactive=True), gr.Textbox(lines = 10, placeholder = "Enter your question here π")], | |
| outputs = gr.Textbox(lines = 10, placeholder = "Your answer will be here soon π"), | |
| title="Q&A with PDF π©π»βπ»πβπ»π‘", | |
| description="This app facilitates a conversation with PDFs available on https://www.delo.si/assets/media/other/20110728/100%20Weird%20Facts%20About%20the%20Human%20Body.pdfπ‘", | |
| theme="soft", | |
| # examples=["Hello", "what is the speed of human nerve impulses?"], | |
| ) | |
| screen.launch() |