Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,73 +6,167 @@ from PyPDF2 import PdfReader
|
|
| 6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 7 |
from langchain.callbacks.manager import CallbackManager
|
| 8 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
| 9 |
-
|
| 10 |
from langchain.vectorstores import Qdrant
|
| 11 |
from qdrant_client.http import models
|
|
|
|
| 12 |
from ctransformers import AutoModelForCausalLM
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
| 15 |
encoder = SentenceTransformer('jinaai/jina-embedding-b-en-v1')
|
| 16 |
-
print("Embedding model loaded...")
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
def get_chunks(text):
|
| 35 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
| 39 |
)
|
|
|
|
| 40 |
chunks = text_splitter.split_text(text)
|
| 41 |
return chunks
|
| 42 |
|
| 43 |
-
all_chunks = []
|
| 44 |
-
|
| 45 |
-
for file in files:
|
| 46 |
-
pdf_path = file
|
| 47 |
-
reader = PdfReader(pdf_path)
|
| 48 |
-
text = ""
|
| 49 |
-
num_of_pages = len(reader.pages)
|
| 50 |
-
|
| 51 |
-
for page in range(num_of_pages):
|
| 52 |
-
current_page = reader.pages[page]
|
| 53 |
-
text += current_page.extract_text()
|
| 54 |
-
|
| 55 |
-
chunks = get_chunks(text)
|
| 56 |
-
all_chunks.extend(chunks)
|
| 57 |
-
|
| 58 |
-
print(f"Total chunks: {len(all_chunks)}")
|
| 59 |
-
print("Chunks are ready...")
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
client.recreate_collection(
|
| 65 |
collection_name="my_facts",
|
| 66 |
vectors_config=models.VectorParams(
|
| 67 |
-
size=encoder.get_sentence_embedding_dimension(),
|
| 68 |
distance=models.Distance.COSINE,
|
| 69 |
),
|
| 70 |
)
|
| 71 |
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
li =
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
client.upload_records(
|
| 78 |
collection_name="my_facts",
|
|
@@ -80,12 +174,14 @@ def chat(files, question):
|
|
| 80 |
models.Record(
|
| 81 |
id=idx,
|
| 82 |
vector=encoder.encode(dic[idx]).tolist(),
|
| 83 |
-
payload={
|
| 84 |
) for idx in dic.keys()
|
| 85 |
],
|
| 86 |
)
|
| 87 |
|
| 88 |
-
|
|
|
|
|
|
|
| 89 |
|
| 90 |
hits = client.search(
|
| 91 |
collection_name="my_facts",
|
|
@@ -94,15 +190,17 @@ def chat(files, question):
|
|
| 94 |
)
|
| 95 |
context = []
|
| 96 |
for hit in hits:
|
| 97 |
-
|
| 98 |
|
| 99 |
-
context =
|
| 100 |
|
| 101 |
-
system_prompt = """You are a helpful
|
| 102 |
-
Read the given context before answering questions and think step by step. If you
|
| 103 |
the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question."""
|
| 104 |
|
|
|
|
| 105 |
B_INST, E_INST = "[INST]", "[/INST]"
|
|
|
|
| 106 |
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
| 107 |
|
| 108 |
SYSTEM_PROMPT = B_SYS + system_prompt + E_SYS
|
|
@@ -112,17 +210,19 @@ def chat(files, question):
|
|
| 112 |
User: {question}"""
|
| 113 |
|
| 114 |
prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST
|
| 115 |
-
|
| 116 |
result = llm(prompt_template)
|
| 117 |
-
return result
|
|
|
|
| 118 |
|
| 119 |
screen = gr.Interface(
|
| 120 |
-
fn=chat,
|
| 121 |
-
inputs=[
|
| 122 |
-
outputs=gr.Textbox(lines=10, placeholder="Your answer will be here soon π"),
|
| 123 |
-
title="Q&A with
|
| 124 |
-
|
| 125 |
theme="soft",
|
|
|
|
| 126 |
)
|
| 127 |
|
| 128 |
-
screen.launch()
|
|
|
|
| 6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 7 |
from langchain.callbacks.manager import CallbackManager
|
| 8 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
| 9 |
+
# from langchain.llms import LlamaCpp
|
| 10 |
from langchain.vectorstores import Qdrant
|
| 11 |
from qdrant_client.http import models
|
| 12 |
+
# from langchain.llms import CTransformers
|
| 13 |
from ctransformers import AutoModelForCausalLM
|
| 14 |
|
| 15 |
+
|
| 16 |
+
# loading the embedding model -
|
| 17 |
+
|
| 18 |
encoder = SentenceTransformer('jinaai/jina-embedding-b-en-v1')
|
|
|
|
| 19 |
|
| 20 |
+
print("embedding model loaded.............................")
|
| 21 |
+
print("####################################################")
|
| 22 |
+
|
| 23 |
+
# loading the LLM
|
| 24 |
+
|
| 25 |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
| 26 |
|
| 27 |
+
print("loading the LLM......................................")
|
| 28 |
+
|
| 29 |
+
# llm = LlamaCpp(
|
| 30 |
+
# model_path="TheBloke/Llama-2-7B-Chat-GGUF/llama-2-7b-chat.Q8_0.gguf",
|
| 31 |
+
# n_ctx=2048,
|
| 32 |
+
# f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls
|
| 33 |
+
# callback_manager=callback_manager,
|
| 34 |
+
# verbose=True,
|
| 35 |
+
# )
|
| 36 |
+
|
| 37 |
+
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-Chat-GGUF",
|
| 38 |
+
model_file="llama-2-7b-chat.Q3_K_S.gguf",
|
| 39 |
+
model_type="llama",
|
| 40 |
+
temperature = 0.2,
|
| 41 |
+
repetition_penalty = 1.5,
|
| 42 |
+
max_new_tokens = 300,
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
print("LLM loaded........................................")
|
| 48 |
+
print("################################################################")
|
| 49 |
+
|
| 50 |
+
# def get_chunks(text):
|
| 51 |
+
# text_splitter = RecursiveCharacterTextSplitter(
|
| 52 |
+
# # seperator = "\n",
|
| 53 |
+
# chunk_size = 250,
|
| 54 |
+
# chunk_overlap = 50,
|
| 55 |
+
# length_function = len,
|
| 56 |
+
# )
|
| 57 |
+
|
| 58 |
+
# chunks = text_splitter.split_text(text)
|
| 59 |
+
# return chunks
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# pdf_path = './100 Weird Facts About the Human Body.pdf'
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# reader = PdfReader(pdf_path)
|
| 66 |
+
# text = ""
|
| 67 |
+
# num_of_pages = len(reader.pages)
|
| 68 |
+
|
| 69 |
+
# for page in range(num_of_pages):
|
| 70 |
+
# current_page = reader.pages[page]
|
| 71 |
+
# text += current_page.extract_text()
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
# chunks = get_chunks(text)
|
| 75 |
+
# print(chunks)
|
| 76 |
+
# print("Chunks are ready.....................................")
|
| 77 |
+
# print("######################################################")
|
| 78 |
+
|
| 79 |
+
# client = QdrantClient(path = "./db")
|
| 80 |
+
# print("db created................................................")
|
| 81 |
+
# print("#####################################################################")
|
| 82 |
|
| 83 |
+
# client.recreate_collection(
|
| 84 |
+
# collection_name="my_facts",
|
| 85 |
+
# vectors_config=models.VectorParams(
|
| 86 |
+
# size=encoder.get_sentence_embedding_dimension(), # Vector size is defined by used model
|
| 87 |
+
# distance=models.Distance.COSINE,
|
| 88 |
+
# ),
|
| 89 |
+
# )
|
| 90 |
|
| 91 |
+
# print("Collection created........................................")
|
| 92 |
+
# print("#########################################################")
|
| 93 |
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# li = []
|
| 97 |
+
# for i in range(len(chunks)):
|
| 98 |
+
# li.append(i)
|
| 99 |
+
|
| 100 |
+
# dic = zip(li, chunks)
|
| 101 |
+
# dic= dict(dic)
|
| 102 |
+
|
| 103 |
+
# client.upload_records(
|
| 104 |
+
# collection_name="my_facts",
|
| 105 |
+
# records=[
|
| 106 |
+
# models.Record(
|
| 107 |
+
# id=idx,
|
| 108 |
+
# vector=encoder.encode(dic[idx]).tolist(),
|
| 109 |
+
# payload= {dic[idx][:5] : dic[idx]}
|
| 110 |
+
# ) for idx in dic.keys()
|
| 111 |
+
# ],
|
| 112 |
+
# )
|
| 113 |
+
|
| 114 |
+
# print("Records uploaded........................................")
|
| 115 |
+
# print("###########################################################")
|
| 116 |
+
|
| 117 |
+
def chat(file, question):
|
| 118 |
def get_chunks(text):
|
| 119 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 120 |
+
# seperator = "\n",
|
| 121 |
+
chunk_size = 250,
|
| 122 |
+
chunk_overlap = 50,
|
| 123 |
+
length_function = len,
|
| 124 |
)
|
| 125 |
+
|
| 126 |
chunks = text_splitter.split_text(text)
|
| 127 |
return chunks
|
| 128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
pdf_path = file
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
reader = PdfReader(pdf_path)
|
| 134 |
+
text = ""
|
| 135 |
+
num_of_pages = len(reader.pages)
|
| 136 |
+
|
| 137 |
+
for page in range(num_of_pages):
|
| 138 |
+
current_page = reader.pages[page]
|
| 139 |
+
text += current_page.extract_text()
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
chunks = get_chunks(text)
|
| 143 |
+
# print(chunks)
|
| 144 |
+
# print("Chunks are ready.....................................")
|
| 145 |
+
# print("######################################################")
|
| 146 |
+
|
| 147 |
+
client = QdrantClient(path = "./db")
|
| 148 |
+
# print("db created................................................")
|
| 149 |
+
# print("#####################################################################")
|
| 150 |
|
| 151 |
client.recreate_collection(
|
| 152 |
collection_name="my_facts",
|
| 153 |
vectors_config=models.VectorParams(
|
| 154 |
+
size=encoder.get_sentence_embedding_dimension(), # Vector size is defined by used model
|
| 155 |
distance=models.Distance.COSINE,
|
| 156 |
),
|
| 157 |
)
|
| 158 |
|
| 159 |
+
# print("Collection created........................................")
|
| 160 |
+
# print("#########################################################")
|
| 161 |
+
|
| 162 |
+
|
| 163 |
|
| 164 |
+
li = []
|
| 165 |
+
for i in range(len(chunks)):
|
| 166 |
+
li.append(i)
|
| 167 |
+
|
| 168 |
+
dic = zip(li, chunks)
|
| 169 |
+
dic= dict(dic)
|
| 170 |
|
| 171 |
client.upload_records(
|
| 172 |
collection_name="my_facts",
|
|
|
|
| 174 |
models.Record(
|
| 175 |
id=idx,
|
| 176 |
vector=encoder.encode(dic[idx]).tolist(),
|
| 177 |
+
payload= {dic[idx][:5] : dic[idx]}
|
| 178 |
) for idx in dic.keys()
|
| 179 |
],
|
| 180 |
)
|
| 181 |
|
| 182 |
+
# print("Records uploaded........................................")
|
| 183 |
+
# print("###########################################################")
|
| 184 |
+
|
| 185 |
|
| 186 |
hits = client.search(
|
| 187 |
collection_name="my_facts",
|
|
|
|
| 190 |
)
|
| 191 |
context = []
|
| 192 |
for hit in hits:
|
| 193 |
+
context.append(list(hit.payload.values())[0])
|
| 194 |
|
| 195 |
+
context = context[0] + context[1] + context[2]
|
| 196 |
|
| 197 |
+
system_prompt = """You are a helpful assistant, you will use the provided context to answer user questions.
|
| 198 |
+
Read the given context before answering questions and think step by step. If you can not answer a user question based on
|
| 199 |
the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question."""
|
| 200 |
|
| 201 |
+
|
| 202 |
B_INST, E_INST = "[INST]", "[/INST]"
|
| 203 |
+
|
| 204 |
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
| 205 |
|
| 206 |
SYSTEM_PROMPT = B_SYS + system_prompt + E_SYS
|
|
|
|
| 210 |
User: {question}"""
|
| 211 |
|
| 212 |
prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST
|
| 213 |
+
|
| 214 |
result = llm(prompt_template)
|
| 215 |
+
return result
|
| 216 |
+
|
| 217 |
|
| 218 |
screen = gr.Interface(
|
| 219 |
+
fn = chat,
|
| 220 |
+
inputs = [PDF(label="Upload a PDF", interactive=True), gr.Textbox(lines = 10, placeholder = "Enter your question here π")],
|
| 221 |
+
outputs = gr.Textbox(lines = 10, placeholder = "Your answer will be here soon π"),
|
| 222 |
+
title="Q&A with PDF π©π»βπ»πβπ»π‘",
|
| 223 |
+
description="This app facilitates a conversation with PDFs available on https://www.delo.si/assets/media/other/20110728/100%20Weird%20Facts%20About%20the%20Human%20Body.pdfπ‘",
|
| 224 |
theme="soft",
|
| 225 |
+
# examples=["Hello", "what is the speed of human nerve impulses?"],
|
| 226 |
)
|
| 227 |
|
| 228 |
+
screen.launch()
|