File size: 14,110 Bytes
3023539
3010980
 
 
7ea42a5
 
948fa66
eb9385f
3023539
 
3010980
7ad5856
3023539
 
 
c42bd73
 
 
 
3023539
 
 
c42bd73
 
 
 
 
 
 
 
 
 
 
3023539
3010980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6092ad0
 
 
 
 
 
7ea42a5
948fa66
 
 
 
5439794
bc4fa7a
3023539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43c2b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ad5856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43c2b09
7ad5856
43c2b09
7ad5856
 
 
 
0b46e85
3023539
 
 
eb9385f
3023539
4940826
3023539
c42bd73
 
 
 
 
 
 
 
 
 
 
 
3023539
 
 
 
 
 
7ea42a5
3023539
 
 
 
43c2b09
3023539
 
 
7ea42a5
 
 
43c2b09
 
7ea42a5
 
 
 
 
 
 
3023539
7ad5856
 
 
 
 
 
 
 
 
 
 
43c2b09
7ad5856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3023539
7ad5856
 
c42bd73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ad5856
 
 
 
c42bd73
 
 
 
 
 
 
 
 
 
 
 
4940826
3023539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ad5856
 
 
 
 
 
 
 
 
 
 
 
 
3010980
 
3023539
7ad5856
 
 
 
 
 
 
 
 
 
 
 
3023539
3010980
3023539
 
9f65115
 
9f9f203
 
 
 
 
 
9f65115
 
 
 
 
 
 
 
 
9f9f203
9f65115
 
9f9f203
9f65115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb9385f
 
 
9f65115
f9f3eb0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import os
import atexit
import asyncio
import inspect
import base64
import mimetypes
from pathlib import Path
import gradio as gr
from openai import OpenAI
from dotenv import load_dotenv
from langsmith import Client as LangSmithClient
from langsmith.run_trees import RunTree

load_dotenv()

INFERENCE_GEMINI = "Gemini"
INFERENCE_QWEN3_VL = "Qwen3-VL"
INFERENCE = INFERENCE_GEMINI

# Configure Gemini via OpenAI-compatible endpoint
GEMINI_BASE_URL = "https://generativelanguage.googleapis.com/v1beta/openai/"
GEMINI_MODEL = "gemini-2.5-flash"

# Configure Qwen3-VL via OpenAI-compatible endpoint
QWEN3_VL_BASE_URL = "https://router.huggingface.co/v1"
QWEN3_VL_MODEL = "Qwen/Qwen3-VL-235B-A22B-Thinking:novita"

if INFERENCE == INFERENCE_GEMINI:
    _api_key = os.getenv("GEMINI_API_KEY")
    _client = OpenAI(api_key=_api_key, base_url=GEMINI_BASE_URL) if _api_key else None
elif INFERENCE == INFERENCE_QWEN3_VL:
    _api_key = os.getenv("HUGGINGFACE_INFERENCE_PROVIDERS_API_KEY")
    _client = OpenAI(api_key=_api_key, base_url=QWEN3_VL_BASE_URL) if _api_key else None

# Optional LangSmith client for guaranteed flush
_ls_api_key_env = os.getenv("LANGSMITH_API_KEY")
_ls_client = LangSmithClient() if _ls_api_key_env else None


def _flush_langsmith():
    """Ensure LangSmith traces are sent before process exit or between runs."""
    if not _ls_client:
        return
    try:
        result = _ls_client.flush()
        if inspect.isawaitable(result):
            try:
                asyncio.run(result)
            except RuntimeError:
                # If an event loop is already running (e.g., in some servers), fallback
                loop = asyncio.get_event_loop()
                loop.create_task(result)
    except Exception:
        # Best-effort flush; do not break the app
        pass


if _ls_client:
    try:
        atexit.register(_flush_langsmith)
    except Exception:
        pass

# Load system prompt from external file
system_prompt_file = Path(__file__).parent / "system_prompt.md"
if system_prompt_file.exists():
    with open(system_prompt_file, "r") as f:
        system_prompt = f.read()


# Load CSS from external file
css_file = Path(__file__).parent / "style.css"
with open(css_file, "r") as f:
    style = f.read()



def _extract_text_and_files(message):
    """Extract user text and attached files from a multimodal message value."""
    if isinstance(message, str):
        return message, []
    # Common multimodal shapes: dict with keys, or list of parts
    files = []
    text_parts = []
    try:
        if isinstance(message, dict):
            if "text" in message:
                text_parts.append(message.get("text") or "")
            if "files" in message and message["files"]:
                files = message["files"] or []
        elif isinstance(message, (list, tuple)):
            for part in message:
                if isinstance(part, str):
                    text_parts.append(part)
                elif isinstance(part, dict):
                    # Heuristic: file-like dicts may have 'path' or 'name'
                    if any(k in part for k in ("path", "name", "mime_type")):
                        files.append(part)
                    elif "text" in part:
                        text_parts.append(part.get("text") or "")
    except Exception:
        pass
    text_combined = " ".join([t for t in text_parts if t])
    return text_combined, files


def _build_image_parts(files):
    image_parts = []
    for f in files or []:
        path = None
        if isinstance(f, str):
            path = f
        elif isinstance(f, dict):
            path = f.get("path") or f.get("name")
        if not path or not os.path.exists(path):
            continue
        mime, _ = mimetypes.guess_type(path)
        if not mime or not mime.startswith("image/"):
            continue
        try:
            with open(path, "rb") as fp:
                b64 = base64.b64encode(fp.read()).decode("utf-8")
            data_url = f"data:{mime};base64,{b64}"
            image_parts.append({
                "type": "image_url",
                "image_url": {"url": data_url},
            })
        except Exception:
            continue
    return image_parts


def _value_to_user_content(value):
    """Normalize any gradio message value to OpenAI user 'content'."""
    text, files = _extract_text_and_files(value)
    final_user_text = (text or "").strip() or "Describe el contenido de la(s) imagen(es)."
    image_parts = _build_image_parts(files)
    if image_parts:
        return [{"type": "text", "text": final_user_text}] + image_parts
    return final_user_text


def _value_preview(value, limit: int = 600) -> str:
    """Safe preview string for any kind of message value."""
    if isinstance(value, str):
        return _preview_text(value, limit)
    text, files = _extract_text_and_files(value)
    suffix = ""
    if files:
        suffix = f" [images:{len(files)}]"
    return _preview_text((text or "").strip() + suffix, limit)


def _preview_text(text: str | None, limit: int = 600) -> str:
    if not text:
        return ""
    if len(text) <= limit:
        return text
    return text[:limit] + "…"


def _history_preview(history: list[tuple[str, str]] | None, max_turns: int = 3, max_chars: int = 1200) -> str:
    if not history:
        return ""
    tail = history[-max_turns:]
    parts: list[str] = []
    for user_turn, assistant_turn in tail:
        if user_turn:
            parts.append(f"User 👤: {_preview_text(user_turn, 300)}")
        if assistant_turn:
            parts.append(f"Assistant 🤖: {_preview_text(assistant_turn, 300)}")
    joined = "\n".join(parts)
    return _preview_text(joined, max_chars)


def respond(message, history: list[tuple[str, str]]):
    """Stream assistant reply via Gemini using OpenAI-compatible API.

    Yields partial text chunks so the UI shows a live stream.
    """
    user_text, files = _extract_text_and_files(message)

    if not _client:
        if INFERENCE == INFERENCE_GEMINI:
            yield (
                "Gemini API key not configured. Set environment variable GEMINI_API_KEY "
                "and restart the app."
            )
        elif INFERENCE == INFERENCE_QWEN3_VL:
            yield (
                "Qwen3-VL API key not configured. Set environment variable QWEN3_VL_API_KEY "
                "and restart the app."
            )
        else:
            yield "Inference engine not configured. Set environment variable INFERENCE to 'Gemini' or 'Qwen3-VL' and restart the app."
        return

    # Build OpenAI-style messages from history
    messages = [
        {
            "role": "system",
            "content": system_prompt,
        }
    ]
    for user_turn, assistant_turn in history or []:
        if user_turn:
            messages.append({"role": "user", "content": _value_to_user_content(user_turn)})
        if assistant_turn:
            messages.append({"role": "assistant", "content": assistant_turn})

    # Build user content with optional inline images (data URLs)
    final_user_text = (user_text or "").strip() or "Describe el contenido de la(s) imagen(es)."

    # Collect image parts using helper
    image_parts = _build_image_parts(files)

    if image_parts:
        user_content = [{"type": "text", "text": final_user_text}] + image_parts
    else:
        user_content = final_user_text

    messages.append({"role": "user", "content": user_content})

    # Optional RunTree instrumentation (does not require LANGSMITH_TRACING)
    _ls_api_key = os.getenv("LANGSMITH_API_KEY")
    pipeline = None
    child_build = None
    child_llm = None
    if _ls_api_key:
        try:
            pipeline = RunTree(
                name="Chat Session",
                run_type="chain",
                inputs={
                    "user_text": _value_preview(message, 600),
                    "has_images": bool(image_parts),
                    "history_preview": _history_preview(history),
                },
            )
            pipeline.post()

            child_build = pipeline.create_child(
                name="BuildMessages",
                run_type="chain",
                inputs={
                    "system_prompt_preview": _preview_text(system_prompt, 400),
                    "user_content_type": "multimodal" if image_parts else "text",
                    "history_turns": len(history or []),
                },
            )
            child_build.post()
            child_build.end(
                outputs={
                    "messages_count": len(messages),
                }
            )
            child_build.patch()
        except Exception:
            pipeline = None

    try:
        if pipeline:
            try:
                if INFERENCE == INFERENCE_GEMINI:
                    child_llm = pipeline.create_child(
                        name="LLMCall",
                        run_type="llm",
                        inputs={
                            "model": GEMINI_MODEL,
                            "provider": "gemini-openai",
                            "messages_preview": _preview_text(str(messages[-1]), 600),
                        },
                    )
                elif INFERENCE == INFERENCE_QWEN3_VL:
                    child_llm = pipeline.create_child(
                        name="LLMCall",
                        run_type="llm",
                        inputs={
                            "model": QWEN3_VL_MODEL,
                            "provider": "qwen3-vl-openai",
                            "messages_preview": _preview_text(str(messages[-1]), 600),
                        },
                    )
                child_llm.post()
            except Exception:
                child_llm = None

        if INFERENCE == INFERENCE_GEMINI:
            stream = _client.chat.completions.create(
                model=GEMINI_MODEL,
                messages=messages,
                stream=True,
            )
        elif INFERENCE == INFERENCE_QWEN3_VL:
            stream = _client.chat.completions.create(
                model=QWEN3_VL_MODEL,
                messages=messages,
                stream=True,
            )

        accumulated = ""
        for chunk in stream:
            try:
                choice = chunk.choices[0]
                delta_text = None
                # OpenAI v1: delta.content
                if getattr(choice, "delta", None) is not None:
                    delta_text = getattr(choice.delta, "content", None)
                # Fallback: some providers emit message.content in chunks
                if delta_text is None and getattr(choice, "message", None) is not None:
                    delta_text = choice.message.get("content") if isinstance(choice.message, dict) else None
                if not delta_text:
                    continue
                accumulated += delta_text
                yield accumulated
            except Exception:
                continue

        if not accumulated:
            yield "(Sin contenido de respuesta)"

        if child_llm:
            try:
                child_llm.end(outputs={"content": _preview_text(accumulated, 5000)})
                child_llm.patch()
            except Exception:
                pass
        if pipeline:
            try:
                pipeline.end(outputs={"answer": _preview_text(accumulated, 5000)})
                pipeline.patch()
            except Exception:
                pass
        # Ensure traces are flushed between requests
        _flush_langsmith()
    except Exception as e:
        if child_llm:
            try:
                child_llm.end(outputs={"error": str(e)})
                child_llm.patch()
            except Exception:
                pass
        if pipeline:
            try:
                pipeline.end(outputs={"error": str(e)})
                pipeline.patch()
            except Exception:
                pass
        yield f"Ocurrió un error al llamar a Gemini: {e}"
        _flush_langsmith()


# Create the Gradio app with Blocks for better control
with gr.Blocks(theme=gr.themes.Monochrome(), css=style, fill_height=True) as demo:
    # Title component
    title = gr.Markdown(
        value="# Gmail & Outlook API Helper",
        visible=True
    )
    
    # Description component that can be hidden
    description = gr.HTML(
        value='<div class="app-description">🤖 Este chatbot te guía <strong>paso a paso</strong> para crear credenciales de API de <strong>Gmail</strong> (Google Cloud) ☁️ o <strong>OneDrive</strong> (Microsoft Entra ID) 🔑. Puedes enviar 📸 <strong>capturas de pantalla</strong> para recibir ayuda visual personalizada. El asistente te dará <strong>una instrucción a la vez</strong> para que no te abrumes ✨</div>',
        visible=True
    )
    
    # State to track if first message has been sent
    first_message_sent = gr.State(False)
    
    # ChatInterface without title and description (handled separately above)
    chat = gr.ChatInterface(
        fn=respond,
        title="",
        description="",
        textbox=gr.MultimodalTextbox(
            file_types=["image", ".png", ".jpg", ".jpeg", ".webp", ".gif"],
            placeholder="Escribe o pega (⌘/Ctrl+V) una imagen o arrástrala aquí",
            file_count="multiple",
        ),
        multimodal=True,
        fill_height=True,
        examples=[
            "¿Cómo creo una API Key de Gmail?",
            "Guíame para obtener credenciales de OneDrive",
        ],
    )
    
    # Hide description on first message
    def hide_description_on_first_message(message, is_sent):
        if not is_sent:
            return gr.update(visible=False), True
        return gr.update(), is_sent
    
    # Connect the event to hide description when user submits first message
    chat.textbox.submit(
        fn=hide_description_on_first_message,
        inputs=[chat.textbox, first_message_sent],
        outputs=[description, first_message_sent],
        queue=False
    )


if __name__ == "__main__":
    demo.launch()