Spaces:
Runtime error
Runtime error
Commit
·
9123e7a
1
Parent(s):
de04575
Create model.h5
Browse files
model.h5
ADDED
|
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import random
|
| 4 |
+
import numpy as np
|
| 5 |
+
from glob import glob
|
| 6 |
+
from PIL import Image, ImageOps
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
|
| 9 |
+
import tensorflow as tf
|
| 10 |
+
from tensorflow import keras
|
| 11 |
+
from tensorflow.keras import layers
|
| 12 |
+
|
| 13 |
+
from google.colab import drive
|
| 14 |
+
drive.mount('/content/gdrive')
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
random.seed(10)
|
| 18 |
+
|
| 19 |
+
IMAGE_SIZE = 128
|
| 20 |
+
BATCH_SIZE = 4
|
| 21 |
+
MAX_TRAIN_IMAGES = 300
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def read_image(image_path):
|
| 25 |
+
image = tf.io.read_file(image_path)
|
| 26 |
+
image = tf.image.decode_png(image, channels=3)
|
| 27 |
+
image.set_shape([None, None, 3])
|
| 28 |
+
image = tf.cast(image, dtype=tf.float32) / 255.0
|
| 29 |
+
|
| 30 |
+
return image
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def random_crop(low_image, enhanced_image):
|
| 34 |
+
low_image_shape = tf.shape(low_image)[:2]
|
| 35 |
+
low_w = tf.random.uniform(
|
| 36 |
+
shape=(), maxval=low_image_shape[1] - IMAGE_SIZE + 1, dtype=tf.int32
|
| 37 |
+
)
|
| 38 |
+
low_h = tf.random.uniform(
|
| 39 |
+
shape=(), maxval=low_image_shape[0] - IMAGE_SIZE + 1, dtype=tf.int32
|
| 40 |
+
)
|
| 41 |
+
enhanced_w = low_w
|
| 42 |
+
enhanced_h = low_h
|
| 43 |
+
low_image_cropped = low_image[
|
| 44 |
+
low_h : low_h + IMAGE_SIZE, low_w : low_w + IMAGE_SIZE
|
| 45 |
+
]
|
| 46 |
+
enhanced_image_cropped = enhanced_image[
|
| 47 |
+
enhanced_h : enhanced_h + IMAGE_SIZE, enhanced_w : enhanced_w + IMAGE_SIZE
|
| 48 |
+
]
|
| 49 |
+
return low_image_cropped, enhanced_image_cropped
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def load_data(low_light_image_path, enhanced_image_path):
|
| 53 |
+
low_light_image = read_image(low_light_image_path)
|
| 54 |
+
enhanced_image = read_image(enhanced_image_path)
|
| 55 |
+
low_light_image, enhanced_image = random_crop(low_light_image, enhanced_image)
|
| 56 |
+
return low_light_image, enhanced_image
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def get_dataset(low_light_images, enhanced_images):
|
| 60 |
+
dataset = tf.data.Dataset.from_tensor_slices((low_light_images, enhanced_images))
|
| 61 |
+
|
| 62 |
+
dataset = dataset.map(load_data, num_parallel_calls=tf.data.AUTOTUNE)
|
| 63 |
+
|
| 64 |
+
dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)
|
| 65 |
+
return dataset
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
train_low_light_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/our485/low/*"))[:MAX_TRAIN_IMAGES]
|
| 69 |
+
train_enhanced_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/our485/high/*"))[:MAX_TRAIN_IMAGES]
|
| 70 |
+
|
| 71 |
+
val_low_light_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/our485/low/*"))[MAX_TRAIN_IMAGES:]
|
| 72 |
+
val_enhanced_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/our485/high/*"))[MAX_TRAIN_IMAGES:]
|
| 73 |
+
|
| 74 |
+
test_low_light_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/eval15/low/*"))
|
| 75 |
+
test_enhanced_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/eval15/high/*"))
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
train_dataset = get_dataset(train_low_light_images, train_enhanced_images)
|
| 79 |
+
val_dataset = get_dataset(val_low_light_images, val_enhanced_images)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
print("Train Dataset:", train_dataset)
|
| 83 |
+
print("Val Dataset:", val_dataset)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def selective_kernel_feature_fusion(
|
| 87 |
+
multi_scale_feature_1, multi_scale_feature_2, multi_scale_feature_3
|
| 88 |
+
):
|
| 89 |
+
channels = list(multi_scale_feature_1.shape)[-1]
|
| 90 |
+
combined_feature = layers.Add()(
|
| 91 |
+
[multi_scale_feature_1, multi_scale_feature_2, multi_scale_feature_3]
|
| 92 |
+
)
|
| 93 |
+
gap = layers.GlobalAveragePooling2D()(combined_feature)
|
| 94 |
+
channel_wise_statistics = tf.reshape(gap, shape=(-1, 1, 1, channels))
|
| 95 |
+
compact_feature_representation = layers.Conv2D(
|
| 96 |
+
filters=channels // 8, kernel_size=(1, 1), activation="relu"
|
| 97 |
+
)(channel_wise_statistics)
|
| 98 |
+
feature_descriptor_1 = layers.Conv2D(
|
| 99 |
+
channels, kernel_size=(1, 1), activation="softmax"
|
| 100 |
+
)(compact_feature_representation)
|
| 101 |
+
feature_descriptor_2 = layers.Conv2D(
|
| 102 |
+
channels, kernel_size=(1, 1), activation="softmax"
|
| 103 |
+
)(compact_feature_representation)
|
| 104 |
+
feature_descriptor_3 = layers.Conv2D(
|
| 105 |
+
channels, kernel_size=(1, 1), activation="softmax"
|
| 106 |
+
)(compact_feature_representation)
|
| 107 |
+
feature_1 = multi_scale_feature_1 * feature_descriptor_1
|
| 108 |
+
feature_2 = multi_scale_feature_2 * feature_descriptor_2
|
| 109 |
+
feature_3 = multi_scale_feature_3 * feature_descriptor_3
|
| 110 |
+
aggregated_feature = layers.Add()([feature_1, feature_2, feature_3])
|
| 111 |
+
return aggregated_feature
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def spatial_attention_block(input_tensor):
|
| 117 |
+
average_pooling = tf.reduce_max(input_tensor, axis=-1)
|
| 118 |
+
average_pooling = tf.expand_dims(average_pooling, axis=-1)
|
| 119 |
+
max_pooling = tf.reduce_mean(input_tensor, axis=-1)
|
| 120 |
+
max_pooling = tf.expand_dims(max_pooling, axis=-1)
|
| 121 |
+
concatenated = layers.Concatenate(axis=-1)([average_pooling, max_pooling])
|
| 122 |
+
feature_map = layers.Conv2D(1, kernel_size=(1, 1))(concatenated)
|
| 123 |
+
feature_map = tf.nn.sigmoid(feature_map)
|
| 124 |
+
return input_tensor * feature_map
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def channel_attention_block(input_tensor):
|
| 128 |
+
channels = list(input_tensor.shape)[-1]
|
| 129 |
+
average_pooling = layers.GlobalAveragePooling2D()(input_tensor)
|
| 130 |
+
feature_descriptor = tf.reshape(average_pooling, shape=(-1, 1, 1, channels))
|
| 131 |
+
feature_activations = layers.Conv2D(
|
| 132 |
+
filters=channels // 8, kernel_size=(1, 1), activation="relu"
|
| 133 |
+
)(feature_descriptor)
|
| 134 |
+
feature_activations = layers.Conv2D(
|
| 135 |
+
filters=channels, kernel_size=(1, 1), activation="sigmoid"
|
| 136 |
+
)(feature_activations)
|
| 137 |
+
return input_tensor * feature_activations
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def dual_attention_unit_block(input_tensor):
|
| 141 |
+
channels = list(input_tensor.shape)[-1]
|
| 142 |
+
feature_map = layers.Conv2D(
|
| 143 |
+
channels, kernel_size=(3, 3), padding="same", activation="relu"
|
| 144 |
+
)(input_tensor)
|
| 145 |
+
feature_map = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(
|
| 146 |
+
feature_map
|
| 147 |
+
)
|
| 148 |
+
channel_attention = channel_attention_block(feature_map)
|
| 149 |
+
spatial_attention = spatial_attention_block(feature_map)
|
| 150 |
+
concatenation = layers.Concatenate(axis=-1)([channel_attention, spatial_attention])
|
| 151 |
+
concatenation = layers.Conv2D(channels, kernel_size=(1, 1))(concatenation)
|
| 152 |
+
return layers.Add()([input_tensor, concatenation])
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
# Recursive Residual Modules
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def down_sampling_module(input_tensor):
|
| 159 |
+
channels = list(input_tensor.shape)[-1]
|
| 160 |
+
main_branch = layers.Conv2D(channels, kernel_size=(1, 1), activation="relu")(
|
| 161 |
+
input_tensor
|
| 162 |
+
)
|
| 163 |
+
main_branch = layers.Conv2D(
|
| 164 |
+
channels, kernel_size=(3, 3), padding="same", activation="relu"
|
| 165 |
+
)(main_branch)
|
| 166 |
+
main_branch = layers.MaxPooling2D()(main_branch)
|
| 167 |
+
main_branch = layers.Conv2D(channels * 2, kernel_size=(1, 1))(main_branch)
|
| 168 |
+
skip_branch = layers.MaxPooling2D()(input_tensor)
|
| 169 |
+
skip_branch = layers.Conv2D(channels * 2, kernel_size=(1, 1))(skip_branch)
|
| 170 |
+
return layers.Add()([skip_branch, main_branch])
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def up_sampling_module(input_tensor):
|
| 174 |
+
channels = list(input_tensor.shape)[-1]
|
| 175 |
+
main_branch = layers.Conv2D(channels, kernel_size=(1, 1), activation="relu")(
|
| 176 |
+
input_tensor
|
| 177 |
+
)
|
| 178 |
+
main_branch = layers.Conv2D(
|
| 179 |
+
channels, kernel_size=(3, 3), padding="same", activation="relu"
|
| 180 |
+
)(main_branch)
|
| 181 |
+
main_branch = layers.UpSampling2D()(main_branch)
|
| 182 |
+
main_branch = layers.Conv2D(channels // 2, kernel_size=(1, 1))(main_branch)
|
| 183 |
+
skip_branch = layers.UpSampling2D()(input_tensor)
|
| 184 |
+
skip_branch = layers.Conv2D(channels // 2, kernel_size=(1, 1))(skip_branch)
|
| 185 |
+
return layers.Add()([skip_branch, main_branch])
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# MRB Block
|
| 189 |
+
def multi_scale_residual_block(input_tensor, channels):
|
| 190 |
+
# features
|
| 191 |
+
level1 = input_tensor
|
| 192 |
+
level2 = down_sampling_module(input_tensor)
|
| 193 |
+
level3 = down_sampling_module(level2)
|
| 194 |
+
# DAU
|
| 195 |
+
level1_dau = dual_attention_unit_block(level1)
|
| 196 |
+
level2_dau = dual_attention_unit_block(level2)
|
| 197 |
+
level3_dau = dual_attention_unit_block(level3)
|
| 198 |
+
# SKFF
|
| 199 |
+
level1_skff = selective_kernel_feature_fusion(
|
| 200 |
+
level1_dau,
|
| 201 |
+
up_sampling_module(level2_dau),
|
| 202 |
+
up_sampling_module(up_sampling_module(level3_dau)),
|
| 203 |
+
)
|
| 204 |
+
level2_skff = selective_kernel_feature_fusion(
|
| 205 |
+
down_sampling_module(level1_dau), level2_dau, up_sampling_module(level3_dau)
|
| 206 |
+
)
|
| 207 |
+
level3_skff = selective_kernel_feature_fusion(
|
| 208 |
+
down_sampling_module(down_sampling_module(level1_dau)),
|
| 209 |
+
down_sampling_module(level2_dau),
|
| 210 |
+
level3_dau,
|
| 211 |
+
)
|
| 212 |
+
# DAU 2
|
| 213 |
+
level1_dau_2 = dual_attention_unit_block(level1_skff)
|
| 214 |
+
level2_dau_2 = up_sampling_module((dual_attention_unit_block(level2_skff)))
|
| 215 |
+
level3_dau_2 = up_sampling_module(
|
| 216 |
+
up_sampling_module(dual_attention_unit_block(level3_skff))
|
| 217 |
+
)
|
| 218 |
+
# SKFF 2
|
| 219 |
+
skff_ = selective_kernel_feature_fusion(level1_dau_2, level2_dau_2, level3_dau_2)
|
| 220 |
+
conv = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(skff_)
|
| 221 |
+
return layers.Add()([input_tensor, conv])
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
def recursive_residual_group(input_tensor, num_mrb, channels):
|
| 227 |
+
conv1 = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(input_tensor)
|
| 228 |
+
for _ in range(num_mrb):
|
| 229 |
+
conv1 = multi_scale_residual_block(conv1, channels)
|
| 230 |
+
conv2 = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(conv1)
|
| 231 |
+
return layers.Add()([conv2, input_tensor])
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
def mirnet_model(num_rrg, num_mrb, channels):
|
| 235 |
+
input_tensor = keras.Input(shape=[None, None, 3])
|
| 236 |
+
x1 = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(input_tensor)
|
| 237 |
+
for _ in range(num_rrg):
|
| 238 |
+
x1 = recursive_residual_group(x1, num_mrb, channels)
|
| 239 |
+
conv = layers.Conv2D(3, kernel_size=(3, 3), padding="same")(x1)
|
| 240 |
+
output_tensor = layers.Add()([input_tensor, conv])
|
| 241 |
+
return keras.Model(input_tensor, output_tensor)
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
model = mirnet_model(num_rrg=3, num_mrb=2, channels=64)
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def charbonnier_loss(y_true, y_pred):
|
| 248 |
+
return tf.reduce_mean(tf.sqrt(tf.square(y_true - y_pred) + tf.square(1e-3)))
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def peak_signal_noise_ratio(y_true, y_pred):
|
| 252 |
+
return tf.image.psnr(y_pred, y_true, max_val=255.0)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
optimizer = keras.optimizers.Adam(learning_rate=1e-4)
|
| 256 |
+
model.compile(
|
| 257 |
+
optimizer=optimizer, loss=charbonnier_loss, metrics=[peak_signal_noise_ratio]
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
history = model.fit(
|
| 261 |
+
train_dataset,
|
| 262 |
+
validation_data=val_dataset,
|
| 263 |
+
#epochs traning cycles set krna k lia
|
| 264 |
+
epochs=1,
|
| 265 |
+
callbacks=[
|
| 266 |
+
keras.callbacks.ReduceLROnPlateau(
|
| 267 |
+
monitor="val_peak_signal_noise_ratio",
|
| 268 |
+
factor=0.5,
|
| 269 |
+
patience=5,
|
| 270 |
+
verbose=1,
|
| 271 |
+
min_delta=1e-7,
|
| 272 |
+
mode="max",
|
| 273 |
+
)
|
| 274 |
+
],
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
plt.plot(history.history["loss"], label="train_loss")
|
| 278 |
+
plt.plot(history.history["val_loss"], label="val_loss")
|
| 279 |
+
plt.xlabel("Epochs")
|
| 280 |
+
plt.ylabel("Loss")
|
| 281 |
+
plt.title("Train and Validation Losses Over Epochs", fontsize=14)
|
| 282 |
+
plt.legend()
|
| 283 |
+
plt.grid()
|
| 284 |
+
plt.show()
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
plt.plot(history.history["peak_signal_noise_ratio"], label="train_psnr")
|
| 288 |
+
plt.plot(history.history["val_peak_signal_noise_ratio"], label="val_psnr")
|
| 289 |
+
plt.xlabel("Epochs")
|
| 290 |
+
plt.ylabel("PSNR")
|
| 291 |
+
plt.title("Train and Validation PSNR Over Epochs", fontsize=14)
|
| 292 |
+
plt.legend()
|
| 293 |
+
plt.grid()
|
| 294 |
+
plt.show()
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
def plot_results(images, titles, figure_size=(12, 12)):
|
| 300 |
+
fig = plt.figure(figsize=figure_size)
|
| 301 |
+
for i in range(len(images)):
|
| 302 |
+
fig.add_subplot(1, len(images), i + 1).set_title(titles[i])
|
| 303 |
+
_ = plt.imshow(images[i])
|
| 304 |
+
plt.axis("off")
|
| 305 |
+
plt.show()
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
def infer(original_image):
|
| 309 |
+
image = keras.preprocessing.image.img_to_array(original_image)
|
| 310 |
+
image = image.astype("float16") / 255.0
|
| 311 |
+
image = np.expand_dims(image, axis=0)
|
| 312 |
+
output = model.predict(image)
|
| 313 |
+
output_image = output[0] * 255.0
|
| 314 |
+
output_image = output_image.clip(0, 255)
|
| 315 |
+
output_image = output_image.reshape(
|
| 316 |
+
(np.shape(output_image)[0], np.shape(output_image)[1], 3)
|
| 317 |
+
)
|
| 318 |
+
output_image = Image.fromarray(np.uint8(output_image))
|
| 319 |
+
original_image = Image.fromarray(np.uint8(original_image))
|
| 320 |
+
return output_image
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
for low_light_image in random.sample(test_low_light_images, 2):
|
| 325 |
+
original_image = Image.open(low_light_image)
|
| 326 |
+
enhanced_image = infer(original_image)
|
| 327 |
+
plot_results(
|
| 328 |
+
[original_image, ImageOps.autocontrast(original_image), enhanced_image],
|
| 329 |
+
["Original", "PIL Autocontrast", "MIRNet Enhanced"],
|
| 330 |
+
(20, 12),
|
| 331 |
+
)
|