Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from diffusers import FluxDiffusionPipeline | |
| from huggingface_hub import hf_hub_download | |
| import spaces | |
| # Load the fine-tuned model | |
| def load_model(): | |
| model_name = "MegaTronX/SuicideGirl-FLUX" # Replace with your model path | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| return model, tokenizer | |
| # Load the base Flux Dev model | |
| model_id = "black-forest-labs/FLUX.1-dev" | |
| pipeline = FluxDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
| pipeline = pipeline.to("cuda") | |
| # Download and load the LoRA weights | |
| lora_model_path = hf_hub_download("MegaTronX/SuicideGirl-FLUX", "SuicideGirls.safetensors") | |
| pipeline.load_lora_weights(lora_model_path) | |
| @spaces.GPU | |
| def generate_image(prompt, negative_prompt, guidance_scale, num_inference_steps): | |
| image = pipeline( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps | |
| ).images[0] | |
| return image | |
| # Create the Gradio interface | |
| iface = gr.Interface( | |
| fn=generate_image, | |
| inputs=[ | |
| gr.Textbox(label="Prompt"), | |
| gr.Textbox(label="Negative Prompt"), | |
| gr.Slider(minimum=1, maximum=20, value=7.5, label="Guidance Scale"), | |
| gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Number of Inference Steps") | |
| ], | |
| outputs=gr.Image(type="pil"), | |
| title="Image Generation with Flux Dev LoRA", | |
| description="Generate images using a Flux Dev model with a custom LoRA fine-tune." | |
| ) | |
| iface.launch() | |