Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- app.py +26 -44
- model_runner.py +22 -0
- parser.py +30 -0
- requirements.txt +2 -0
- zip_util.py +38 -0
app.py
CHANGED
|
@@ -1,52 +1,34 @@
|
|
| 1 |
-
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
-
from
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
|
| 7 |
-
repo_id="tHottie/NeuralDaredevil-8B-abliterated-Q4_K_M-GGUF",
|
| 8 |
-
filename="neuraldaredevil-8b-abliterated-q4_k_m-imat.gguf",
|
| 9 |
-
local_dir="./models"
|
| 10 |
-
)
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
# Process the code response to extract the relevant files
|
| 15 |
-
# For example, you could use a regular expression to find the file paths in the text
|
| 16 |
-
import re
|
| 17 |
-
file_paths = re.findall(r'file: (.+)', code_response)
|
| 18 |
-
|
| 19 |
-
# Create a zip file with the extracted files
|
| 20 |
-
import zipfile
|
| 21 |
-
with zipfile.ZipFile('output.zip', 'w') as zip_file:
|
| 22 |
-
for file_path in file_paths:
|
| 23 |
-
zip_file.write(file_path)
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
n_ctx=8192,
|
| 34 |
-
)
|
| 35 |
-
|
| 36 |
-
# Process the response to extract code files
|
| 37 |
-
processed_response = process_code_response(message)
|
| 38 |
-
|
| 39 |
-
return processed_response
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
)
|
|
|
|
| 48 |
|
| 49 |
-
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
main()
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from model_runner import ModelRunner
|
| 3 |
+
from parser import parse_to_files
|
| 4 |
+
from zip_util import make_zip_from_files
|
| 5 |
+
import os
|
| 6 |
|
| 7 |
+
# Path or model identifier for your GGUF model
|
| 8 |
+
MODEL_PATH = os.environ.get("GGUF_MODEL_PATH", "path/to/your/model.gguf")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Instantiate once
|
| 11 |
+
runner = ModelRunner(MODEL_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
def process_and_zip(ai_response: str) -> str:
|
| 14 |
+
"""
|
| 15 |
+
Given the pasted AI response, do model interpretation → parse → zip → return zip path
|
| 16 |
+
"""
|
| 17 |
+
model_output = runner.interpret_code_description(ai_response)
|
| 18 |
+
file_list = parse_to_files(model_output)
|
| 19 |
+
zip_path = make_zip_from_files(file_list)
|
| 20 |
+
return zip_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
with gr.Blocks() as demo:
|
| 23 |
+
gr.Markdown("### Paste your AI model response (with code descriptions) below")
|
| 24 |
+
input_box = gr.Textbox(lines=15, placeholder="Paste AI response here")
|
| 25 |
+
output_zip = gr.DownloadButton(
|
| 26 |
+
"Download code zip",
|
| 27 |
+
value=lambda resp: resp, # will be provided after processing
|
| 28 |
)
|
| 29 |
+
submit = gr.Button("Generate Code Bundle")
|
| 30 |
|
| 31 |
+
# When clicked, run process_and_zip
|
| 32 |
+
submit.click(fn=process_and_zip, inputs=input_box, outputs=output_zip)
|
| 33 |
|
| 34 |
+
demo.launch()
|
|
|
model_runner.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from llama_cpp import Llama # assuming llama-cpp-python is used to run GGUF
|
| 3 |
+
|
| 4 |
+
class ModelRunner:
|
| 5 |
+
def __init__(self, model_path: str):
|
| 6 |
+
# Initialize the model once
|
| 7 |
+
self.llm = Llama(model_path=model_path)
|
| 8 |
+
|
| 9 |
+
def interpret_code_description(self, prompt: str) -> str:
|
| 10 |
+
"""
|
| 11 |
+
Given the pasted AI response (prompt), return the model’s parsing output
|
| 12 |
+
(e.g. JSON or a DSL).
|
| 13 |
+
"""
|
| 14 |
+
# You may want to wrap the prompt with instructions
|
| 15 |
+
wrapped = (
|
| 16 |
+
"You are a code parser. The following is a description of multiple files with code. "
|
| 17 |
+
"Produce as output a JSON object mapping filenames to file contents. "
|
| 18 |
+
"If something is ambiguous, try your best.\n\n"
|
| 19 |
+
+ prompt
|
| 20 |
+
)
|
| 21 |
+
resp = self.llm(prompt=wrapped, max_tokens=2048)
|
| 22 |
+
return resp["choices"][0]["text"]
|
parser.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import re
|
| 3 |
+
from typing import List, Tuple, Dict
|
| 4 |
+
|
| 5 |
+
def parse_to_files(model_output: str) -> List[Tuple[str, str]]:
|
| 6 |
+
"""
|
| 7 |
+
Parses the model’s output (ideally JSON) to a list of (filename, content).
|
| 8 |
+
Fallback heuristics if output is not strictly JSON.
|
| 9 |
+
"""
|
| 10 |
+
# First try JSON parsing
|
| 11 |
+
try:
|
| 12 |
+
obj = json.loads(model_output)
|
| 13 |
+
files = []
|
| 14 |
+
for fname, content in obj.items():
|
| 15 |
+
files.append((fname, content))
|
| 16 |
+
return files
|
| 17 |
+
except json.JSONDecodeError:
|
| 18 |
+
# fallback: look for patterns like:
|
| 19 |
+
# Filename: xyz.py \n```python\n ... \n```
|
| 20 |
+
pattern = r"Filename:\s*(?P<fname>[\w\.\-/]+)\s*```(?:[a-zA-Z0-9]*)\n(?P<code>[\s\S]*?)```"
|
| 21 |
+
matches = re.finditer(pattern, model_output)
|
| 22 |
+
files = []
|
| 23 |
+
for m in matches:
|
| 24 |
+
fname = m.group("fname").strip()
|
| 25 |
+
code = m.group("code")
|
| 26 |
+
files.append((fname, code))
|
| 27 |
+
if files:
|
| 28 |
+
return files
|
| 29 |
+
# ultimate fallback: write everything into a single file
|
| 30 |
+
return [("all_code.txt", model_output)]
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=3.0
|
| 2 |
+
llama-cpp-python
|
zip_util.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import zipfile
|
| 3 |
+
import uuid
|
| 4 |
+
from typing import List, Tuple
|
| 5 |
+
|
| 6 |
+
def make_zip_from_files(
|
| 7 |
+
files: List[Tuple[str, str]],
|
| 8 |
+
zip_name: str = None,
|
| 9 |
+
out_dir: str = "/tmp"
|
| 10 |
+
) -> str:
|
| 11 |
+
"""
|
| 12 |
+
Take a list of (filename, content) tuples, write them into a temp folder,
|
| 13 |
+
zip them, and return the path to the zip file.
|
| 14 |
+
"""
|
| 15 |
+
if zip_name is None:
|
| 16 |
+
zip_name = f"code_bundle_{uuid.uuid4().hex}.zip"
|
| 17 |
+
zip_path = os.path.join(out_dir, zip_name)
|
| 18 |
+
# Make a temp working directory
|
| 19 |
+
temp_dir = os.path.join(out_dir, f"code_dir_{uuid.uuid4().hex}")
|
| 20 |
+
os.makedirs(temp_dir, exist_ok=True)
|
| 21 |
+
|
| 22 |
+
for fname, content in files:
|
| 23 |
+
# ensure subdirectories exist
|
| 24 |
+
full_path = os.path.join(temp_dir, fname)
|
| 25 |
+
os.makedirs(os.path.dirname(full_path), exist_ok=True)
|
| 26 |
+
with open(full_path, "w", encoding="utf-8") as f:
|
| 27 |
+
f.write(content)
|
| 28 |
+
|
| 29 |
+
# create zip
|
| 30 |
+
with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_DEFLATED) as zf:
|
| 31 |
+
for root, _, fnames in os.walk(temp_dir):
|
| 32 |
+
for f in fnames:
|
| 33 |
+
full = os.path.join(root, f)
|
| 34 |
+
# store relative path inside zip
|
| 35 |
+
rel = os.path.relpath(full, start=temp_dir)
|
| 36 |
+
zf.write(full, arcname=rel)
|
| 37 |
+
|
| 38 |
+
return zip_path
|