Spaces:
Runtime error
Runtime error
Commit
·
d29a257
1
Parent(s):
f5fc0c6
Deploy RAG pipeline to Hugging Face Spaces
Browse files- README.md +75 -10
- app.py +401 -0
- requirements.txt +10 -0
README.md
CHANGED
|
@@ -1,12 +1,77 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
| 1 |
+
# 🔍 RAG Pipeline For LLMs 🚀
|
| 2 |
+
|
| 3 |
+
[](https://huggingface.co/spaces/Mehardeep79/rag-pipeline-llm)
|
| 4 |
+
[](https://python.org)
|
| 5 |
+
|
| 6 |
+
## 📖 Project Overview
|
| 7 |
+
|
| 8 |
+
An intelligent **Retrieval-Augmented Generation (RAG)** pipeline that combines semantic search with question-answering capabilities. This system fetches Wikipedia articles, processes them into searchable chunks, and uses state-of-the-art AI models to provide accurate, context-aware answers.
|
| 9 |
+
|
| 10 |
+
## ✨ Key Features
|
| 11 |
+
|
| 12 |
+
- 📚 **Dynamic Knowledge Retrieval** from Wikipedia with error handling
|
| 13 |
+
- 🧮 **Semantic Search** using sentence transformers (no keyword dependency)
|
| 14 |
+
- ⚡ **Fast Vector Similarity** with FAISS indexing (sub-second search)
|
| 15 |
+
- 🤖 **Intelligent Answer Generation** using pre-trained QA models
|
| 16 |
+
- 📊 **Confidence Scoring** for answer quality assessment
|
| 17 |
+
- 🎛️ **Customizable Parameters** (chunk size, retrieval count, overlap)
|
| 18 |
+
- ✂️ **Smart Text Chunking** with overlapping segments for context preservation
|
| 19 |
+
|
| 20 |
+
## 🏗️ Architecture
|
| 21 |
+
|
| 22 |
+
```
|
| 23 |
+
User Query → Embedding → FAISS Search → Retrieve Chunks → QA Model → Answer + Confidence
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
## 🤖 AI Models Used
|
| 27 |
+
|
| 28 |
+
- **📏 Text Chunking**: `sentence-transformers/all-mpnet-base-v2` tokenizer
|
| 29 |
+
- **🧮 Vector Embeddings**: `sentence-transformers/all-mpnet-base-v2` (768-dimensional)
|
| 30 |
+
- **❓ Question Answering**: `deepset/roberta-base-squad2` (RoBERTa fine-tuned on SQuAD 2.0)
|
| 31 |
+
- **🔍 Vector Search**: FAISS IndexFlatL2 for L2 distance similarity
|
| 32 |
+
|
| 33 |
+
## 🚀 How to Use
|
| 34 |
+
|
| 35 |
+
1. **📖 Process Article**: Enter any Wikipedia topic and configure chunk settings
|
| 36 |
+
2. **❓ Ask Questions**: Switch to Q&A tab and enter your questions
|
| 37 |
+
3. **📊 View Results**: Explore answers with confidence scores and similarity metrics
|
| 38 |
+
4. **🔍 Analyze**: Check retrieved context and visualization analytics
|
| 39 |
+
|
| 40 |
+
## 💡 Example Usage
|
| 41 |
+
|
| 42 |
+
```
|
| 43 |
+
Topic: "Artificial Intelligence"
|
| 44 |
+
Question: "What is machine learning?"
|
| 45 |
+
Answer: "Machine learning is a subset of artificial intelligence..."
|
| 46 |
+
Confidence: 89.7%
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
## 🔧 Configuration Options
|
| 50 |
+
|
| 51 |
+
- **Chunk Size**: 128-512 tokens (default: 256)
|
| 52 |
+
- **Overlap**: 10-50 tokens (default: 20)
|
| 53 |
+
- **Retrieval Count**: 1-10 chunks (default: 3)
|
| 54 |
+
|
| 55 |
+
## 📊 Performance
|
| 56 |
+
|
| 57 |
+
- **Search Speed**: Sub-second retrieval for 1000+ chunks
|
| 58 |
+
- **Accuracy**: High precision with confidence scoring
|
| 59 |
+
- **Memory Efficient**: Optimized chunk sizes prevent token overflow
|
| 60 |
+
|
| 61 |
+
## 🔗 Links
|
| 62 |
+
|
| 63 |
+
- **📝 Full Project**: [GitHub Repository](https://github.com/Mehardeep79/RAG_Pipeline_LLM)
|
| 64 |
+
- **📓 Jupyter Notebook**: Complete implementation with explanations
|
| 65 |
+
- **🌐 Streamlit App**: Alternative web interface
|
| 66 |
+
|
| 67 |
+
## 🤝 Credits
|
| 68 |
+
|
| 69 |
+
Built with ❤️ using:
|
| 70 |
+
- 🤗 **Hugging Face** for transformers and model hosting
|
| 71 |
+
- ⚡ **FAISS** for efficient vector search
|
| 72 |
+
- 🎨 **Gradio** for the interactive interface
|
| 73 |
+
- 📖 **Wikipedia API** for knowledge content
|
| 74 |
+
|
| 75 |
---
|
| 76 |
|
| 77 |
+
**⭐ If you find this useful, please give it a star on GitHub!**
|
app.py
ADDED
|
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import wikipedia
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
+
import faiss
|
| 7 |
+
import plotly.graph_objects as go
|
| 8 |
+
import plotly.express as px
|
| 9 |
+
from plotly.subplots import make_subplots
|
| 10 |
+
import time
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import warnings
|
| 13 |
+
warnings.filterwarnings("ignore")
|
| 14 |
+
|
| 15 |
+
# Global variables to store models and data
|
| 16 |
+
embedding_model = None
|
| 17 |
+
qa_pipeline = None
|
| 18 |
+
chunks = None
|
| 19 |
+
embeddings = None
|
| 20 |
+
index = None
|
| 21 |
+
document = None
|
| 22 |
+
|
| 23 |
+
def load_models():
|
| 24 |
+
"""Load and cache the ML models"""
|
| 25 |
+
global embedding_model, qa_pipeline
|
| 26 |
+
|
| 27 |
+
if embedding_model is None:
|
| 28 |
+
print("🤖 Loading embedding model...")
|
| 29 |
+
embedding_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
| 30 |
+
|
| 31 |
+
print("🤖 Loading QA model...")
|
| 32 |
+
qa_tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
|
| 33 |
+
qa_model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
|
| 34 |
+
qa_pipeline = pipeline("question-answering", model=qa_model, tokenizer=qa_tokenizer)
|
| 35 |
+
|
| 36 |
+
print("✅ Models loaded successfully!")
|
| 37 |
+
|
| 38 |
+
return "✅ Models are ready!"
|
| 39 |
+
|
| 40 |
+
def get_wikipedia_content(topic):
|
| 41 |
+
"""Fetch Wikipedia content"""
|
| 42 |
+
try:
|
| 43 |
+
page = wikipedia.page(topic)
|
| 44 |
+
return page.content, f"✅ Successfully fetched '{topic}' article"
|
| 45 |
+
except wikipedia.exceptions.PageError:
|
| 46 |
+
return None, f"❌ Page '{topic}' not found. Please try a different topic."
|
| 47 |
+
except wikipedia.exceptions.DisambiguationError as e:
|
| 48 |
+
return None, f"⚠️ Ambiguous topic. Try one of these: {', '.join(e.options[:5])}"
|
| 49 |
+
|
| 50 |
+
def split_text(text, chunk_size=256, chunk_overlap=20):
|
| 51 |
+
"""Split text into overlapping chunks"""
|
| 52 |
+
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
|
| 53 |
+
|
| 54 |
+
# Split into sentences first
|
| 55 |
+
sentences = text.split('. ')
|
| 56 |
+
chunks = []
|
| 57 |
+
current_chunk = ""
|
| 58 |
+
|
| 59 |
+
for sentence in sentences:
|
| 60 |
+
test_chunk = current_chunk + ". " + sentence if current_chunk else sentence
|
| 61 |
+
test_tokens = tokenizer.tokenize(test_chunk)
|
| 62 |
+
|
| 63 |
+
if len(test_tokens) > chunk_size:
|
| 64 |
+
if current_chunk:
|
| 65 |
+
chunks.append(current_chunk.strip())
|
| 66 |
+
|
| 67 |
+
# Add overlap
|
| 68 |
+
if chunk_overlap > 0 and chunks:
|
| 69 |
+
overlap_tokens = tokenizer.tokenize(current_chunk)
|
| 70 |
+
if len(overlap_tokens) > chunk_overlap:
|
| 71 |
+
overlap_start = len(overlap_tokens) - chunk_overlap
|
| 72 |
+
overlap_text = tokenizer.convert_tokens_to_string(overlap_tokens[overlap_start:])
|
| 73 |
+
current_chunk = overlap_text + ". " + sentence
|
| 74 |
+
else:
|
| 75 |
+
current_chunk = sentence
|
| 76 |
+
else:
|
| 77 |
+
current_chunk = sentence
|
| 78 |
+
else:
|
| 79 |
+
current_chunk = sentence
|
| 80 |
+
else:
|
| 81 |
+
current_chunk = test_chunk
|
| 82 |
+
|
| 83 |
+
if current_chunk.strip():
|
| 84 |
+
chunks.append(current_chunk.strip())
|
| 85 |
+
|
| 86 |
+
return chunks
|
| 87 |
+
|
| 88 |
+
def process_article(topic, chunk_size, chunk_overlap):
|
| 89 |
+
"""Process Wikipedia article into chunks and embeddings"""
|
| 90 |
+
global chunks, embeddings, index, document
|
| 91 |
+
|
| 92 |
+
if not topic.strip():
|
| 93 |
+
return "⚠️ Please enter a topic first!", None, ""
|
| 94 |
+
|
| 95 |
+
# Load models first
|
| 96 |
+
load_models()
|
| 97 |
+
|
| 98 |
+
# Fetch content
|
| 99 |
+
document, message = get_wikipedia_content(topic)
|
| 100 |
+
|
| 101 |
+
if document is None:
|
| 102 |
+
return message, None, ""
|
| 103 |
+
|
| 104 |
+
# Process text
|
| 105 |
+
chunks = split_text(document, int(chunk_size), int(chunk_overlap))
|
| 106 |
+
|
| 107 |
+
# Create embeddings
|
| 108 |
+
embeddings = embedding_model.encode(chunks)
|
| 109 |
+
|
| 110 |
+
# Build FAISS index
|
| 111 |
+
dimension = embeddings.shape[1]
|
| 112 |
+
index = faiss.IndexFlatL2(dimension)
|
| 113 |
+
index.add(np.array(embeddings))
|
| 114 |
+
|
| 115 |
+
# Create summary stats
|
| 116 |
+
chunk_lengths = [len(chunk.split()) for chunk in chunks]
|
| 117 |
+
summary = f"""
|
| 118 |
+
📊 **Processing Summary:**
|
| 119 |
+
- **Total chunks**: {len(chunks)}
|
| 120 |
+
- **Embedding dimension**: {dimension}
|
| 121 |
+
- **Average chunk length**: {np.mean(chunk_lengths):.1f} words
|
| 122 |
+
- **Min/Max chunk length**: {min(chunk_lengths)}/{max(chunk_lengths)} words
|
| 123 |
+
- **Document length**: {len(document.split())} words
|
| 124 |
+
|
| 125 |
+
✅ Ready for questions!
|
| 126 |
+
"""
|
| 127 |
+
|
| 128 |
+
return f"✅ Successfully processed '{topic}' into {len(chunks)} chunks!", create_chunk_visualization(), summary
|
| 129 |
+
|
| 130 |
+
def create_chunk_visualization():
|
| 131 |
+
"""Create chunk length distribution plot"""
|
| 132 |
+
if chunks is None:
|
| 133 |
+
return None
|
| 134 |
+
|
| 135 |
+
chunk_lengths = [len(chunk.split()) for chunk in chunks]
|
| 136 |
+
|
| 137 |
+
fig = make_subplots(
|
| 138 |
+
rows=1, cols=2,
|
| 139 |
+
subplot_titles=("📏 Chunk Length Distribution", "📊 Statistical Summary"),
|
| 140 |
+
specs=[[{"type": "bar"}, {"type": "box"}]]
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
# Histogram
|
| 144 |
+
fig.add_trace(
|
| 145 |
+
go.Histogram(x=chunk_lengths, nbinsx=15, name="Distribution",
|
| 146 |
+
marker_color="skyblue", opacity=0.7),
|
| 147 |
+
row=1, col=1
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
# Box plot
|
| 151 |
+
fig.add_trace(
|
| 152 |
+
go.Box(y=chunk_lengths, name="Statistics",
|
| 153 |
+
marker_color="lightgreen", boxmean=True),
|
| 154 |
+
row=1, col=2
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
fig.update_layout(height=400, showlegend=False, title="📊 Chunk Analysis")
|
| 158 |
+
|
| 159 |
+
return fig
|
| 160 |
+
|
| 161 |
+
def answer_question(question, k_retrieval):
|
| 162 |
+
"""Answer question using RAG pipeline"""
|
| 163 |
+
global chunks, embeddings, index, qa_pipeline
|
| 164 |
+
|
| 165 |
+
if chunks is None or index is None:
|
| 166 |
+
return "⚠️ Please process an article first!", None, "", ""
|
| 167 |
+
|
| 168 |
+
if not question.strip():
|
| 169 |
+
return "⚠️ Please enter a question!", None, "", ""
|
| 170 |
+
|
| 171 |
+
# Get query embedding
|
| 172 |
+
query_embedding = embedding_model.encode([question])
|
| 173 |
+
|
| 174 |
+
# Search
|
| 175 |
+
distances, indices = index.search(np.array(query_embedding), int(k_retrieval))
|
| 176 |
+
retrieved_chunks = [chunks[i] for i in indices[0]]
|
| 177 |
+
|
| 178 |
+
# Generate answer
|
| 179 |
+
context = " ".join(retrieved_chunks)
|
| 180 |
+
answer = qa_pipeline(question=question, context=context)
|
| 181 |
+
|
| 182 |
+
# Format results
|
| 183 |
+
confidence = answer['score']
|
| 184 |
+
|
| 185 |
+
# Determine confidence level
|
| 186 |
+
if confidence >= 0.8:
|
| 187 |
+
confidence_emoji = "🟢"
|
| 188 |
+
confidence_text = "Very High"
|
| 189 |
+
elif confidence >= 0.6:
|
| 190 |
+
confidence_emoji = "🔵"
|
| 191 |
+
confidence_text = "High"
|
| 192 |
+
elif confidence >= 0.4:
|
| 193 |
+
confidence_emoji = "🟡"
|
| 194 |
+
confidence_text = "Medium"
|
| 195 |
+
else:
|
| 196 |
+
confidence_emoji = "🔴"
|
| 197 |
+
confidence_text = "Low"
|
| 198 |
+
|
| 199 |
+
# Format answer
|
| 200 |
+
formatted_answer = f"""
|
| 201 |
+
🤖 **Answer**: {answer['answer']}
|
| 202 |
+
|
| 203 |
+
{confidence_emoji} **Confidence**: {confidence:.1%} ({confidence_text})
|
| 204 |
+
📏 **Answer Length**: {len(answer['answer'])} characters
|
| 205 |
+
🔍 **Chunks Used**: {len(retrieved_chunks)}
|
| 206 |
+
"""
|
| 207 |
+
|
| 208 |
+
# Format retrieved chunks
|
| 209 |
+
retrieved_text = "📋 **Retrieved Context Chunks:**\n\n"
|
| 210 |
+
for i, chunk in enumerate(retrieved_chunks):
|
| 211 |
+
similarity = 1 / (1 + distances[0][i])
|
| 212 |
+
retrieved_text += f"**Chunk {i+1}** (Similarity: {similarity:.3f}):\n{chunk}\n\n---\n\n"
|
| 213 |
+
|
| 214 |
+
# Create similarity visualization
|
| 215 |
+
similarity_scores = 1 / (1 + distances[0])
|
| 216 |
+
similarity_plot = create_similarity_plot(similarity_scores)
|
| 217 |
+
|
| 218 |
+
return formatted_answer, similarity_plot, retrieved_text, create_confidence_gauge(confidence)
|
| 219 |
+
|
| 220 |
+
def create_similarity_plot(similarity_scores):
|
| 221 |
+
"""Create similarity scores bar chart"""
|
| 222 |
+
fig = go.Figure(data=[
|
| 223 |
+
go.Bar(x=[f"Rank {i+1}" for i in range(len(similarity_scores))],
|
| 224 |
+
y=similarity_scores,
|
| 225 |
+
marker_color=['gold', 'silver', '#CD7F32'][:len(similarity_scores)],
|
| 226 |
+
text=[f'{score:.3f}' for score in similarity_scores],
|
| 227 |
+
textposition='auto')
|
| 228 |
+
])
|
| 229 |
+
|
| 230 |
+
fig.update_layout(
|
| 231 |
+
title="🎯 Retrieved Chunks Similarity Scores",
|
| 232 |
+
xaxis_title="Retrieved Chunk Rank",
|
| 233 |
+
yaxis_title="Similarity Score",
|
| 234 |
+
height=400
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
return fig
|
| 238 |
+
|
| 239 |
+
def create_confidence_gauge(confidence):
|
| 240 |
+
"""Create confidence gauge visualization"""
|
| 241 |
+
fig = go.Figure(go.Indicator(
|
| 242 |
+
mode = "gauge+number+delta",
|
| 243 |
+
value = confidence * 100,
|
| 244 |
+
domain = {'x': [0, 1], 'y': [0, 1]},
|
| 245 |
+
title = {'text': "🎯 Answer Confidence (%)"},
|
| 246 |
+
delta = {'reference': 80},
|
| 247 |
+
gauge = {
|
| 248 |
+
'axis': {'range': [None, 100]},
|
| 249 |
+
'bar': {'color': "darkblue"},
|
| 250 |
+
'steps': [
|
| 251 |
+
{'range': [0, 20], 'color': "red"},
|
| 252 |
+
{'range': [20, 40], 'color': "orange"},
|
| 253 |
+
{'range': [40, 60], 'color': "yellow"},
|
| 254 |
+
{'range': [60, 80], 'color': "lightgreen"},
|
| 255 |
+
{'range': [80, 100], 'color': "green"}
|
| 256 |
+
],
|
| 257 |
+
'threshold': {
|
| 258 |
+
'line': {'color': "black", 'width': 4},
|
| 259 |
+
'thickness': 0.75,
|
| 260 |
+
'value': 90
|
| 261 |
+
}
|
| 262 |
+
}
|
| 263 |
+
))
|
| 264 |
+
|
| 265 |
+
fig.update_layout(height=400)
|
| 266 |
+
return fig
|
| 267 |
+
|
| 268 |
+
def clear_data():
|
| 269 |
+
"""Clear all processed data"""
|
| 270 |
+
global chunks, embeddings, index, document
|
| 271 |
+
chunks = None
|
| 272 |
+
embeddings = None
|
| 273 |
+
index = None
|
| 274 |
+
document = None
|
| 275 |
+
return "🗑️ Data cleared! Ready for new article.", None, "", "", None, None, ""
|
| 276 |
+
|
| 277 |
+
# Create Gradio interface optimized for Hugging Face Spaces
|
| 278 |
+
def create_interface():
|
| 279 |
+
"""Create the main Gradio interface"""
|
| 280 |
+
|
| 281 |
+
with gr.Blocks(
|
| 282 |
+
title="🔍 RAG Pipeline For LLMs",
|
| 283 |
+
theme=gr.themes.Soft(),
|
| 284 |
+
) as interface:
|
| 285 |
+
|
| 286 |
+
# Header
|
| 287 |
+
gr.Markdown("""
|
| 288 |
+
# 🔍 RAG Pipeline For LLMs 🚀
|
| 289 |
+
|
| 290 |
+
<div style="text-align: center; color: #666; margin-bottom: 2rem;">
|
| 291 |
+
An intelligent Q&A system powered by 🤗 Hugging Face, 📖 Wikipedia, and ⚡ FAISS vector search
|
| 292 |
+
</div>
|
| 293 |
+
""")
|
| 294 |
+
|
| 295 |
+
with gr.Tab("📖 Article Processing"):
|
| 296 |
+
with gr.Row():
|
| 297 |
+
with gr.Column(scale=2):
|
| 298 |
+
gr.Markdown("### 📋 Step 1: Configure & Process Article")
|
| 299 |
+
|
| 300 |
+
topic_input = gr.Textbox(
|
| 301 |
+
label="📖 Wikipedia Topic",
|
| 302 |
+
placeholder="e.g., Artificial Intelligence, Climate Change, Python Programming",
|
| 303 |
+
info="Enter any topic available on Wikipedia"
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
with gr.Row():
|
| 307 |
+
chunk_size = gr.Slider(
|
| 308 |
+
label="📏 Chunk Size (tokens)",
|
| 309 |
+
minimum=128,
|
| 310 |
+
maximum=512,
|
| 311 |
+
value=256,
|
| 312 |
+
step=32,
|
| 313 |
+
info="Larger chunks = more context, smaller chunks = more precision"
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
chunk_overlap = gr.Slider(
|
| 317 |
+
label="🔗 Chunk Overlap (tokens)",
|
| 318 |
+
minimum=10,
|
| 319 |
+
maximum=50,
|
| 320 |
+
value=20,
|
| 321 |
+
step=5,
|
| 322 |
+
info="Overlap helps maintain context between chunks"
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
process_btn = gr.Button("🔄 Fetch & Process Article", variant="primary", size="lg")
|
| 326 |
+
|
| 327 |
+
processing_status = gr.Textbox(
|
| 328 |
+
label="📊 Processing Status",
|
| 329 |
+
interactive=False
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
with gr.Column(scale=1):
|
| 333 |
+
processing_summary = gr.Markdown("### 📈 Processing Summary\n*Process an article to see statistics*")
|
| 334 |
+
|
| 335 |
+
chunk_plot = gr.Plot(label="📊 Chunk Analysis Visualization")
|
| 336 |
+
|
| 337 |
+
with gr.Tab("❓ Question Answering"):
|
| 338 |
+
with gr.Row():
|
| 339 |
+
with gr.Column(scale=2):
|
| 340 |
+
gr.Markdown("### 🎯 Step 2: Ask Your Question")
|
| 341 |
+
|
| 342 |
+
question_input = gr.Textbox(
|
| 343 |
+
label="❓ Your Question",
|
| 344 |
+
placeholder="e.g., What is the main concept? How does it work?",
|
| 345 |
+
info="Ask any question about the processed article"
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
k_retrieval = gr.Slider(
|
| 349 |
+
label="🔍 Number of Chunks to Retrieve",
|
| 350 |
+
minimum=1,
|
| 351 |
+
maximum=10,
|
| 352 |
+
value=3,
|
| 353 |
+
step=1,
|
| 354 |
+
info="More chunks = broader context, fewer chunks = more focused"
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
answer_btn = gr.Button("🎯 Get Answer", variant="primary", size="lg")
|
| 358 |
+
|
| 359 |
+
with gr.Column(scale=1):
|
| 360 |
+
gr.Markdown("### 💡 Tips\n- Process an article first\n- Ask specific questions\n- Adjust retrieval count for better results")
|
| 361 |
+
|
| 362 |
+
answer_output = gr.Markdown(label="🤖 Generated Answer")
|
| 363 |
+
|
| 364 |
+
with gr.Row():
|
| 365 |
+
similarity_plot = gr.Plot(label="🎯 Similarity Scores")
|
| 366 |
+
confidence_gauge = gr.Plot(label="📊 Confidence Meter")
|
| 367 |
+
|
| 368 |
+
with gr.Tab("📋 Retrieved Context"):
|
| 369 |
+
retrieved_chunks = gr.Markdown(
|
| 370 |
+
label="📄 Retrieved Chunks",
|
| 371 |
+
value="*Ask a question to see retrieved context chunks*"
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
# Event handlers
|
| 375 |
+
process_btn.click(
|
| 376 |
+
fn=process_article,
|
| 377 |
+
inputs=[topic_input, chunk_size, chunk_overlap],
|
| 378 |
+
outputs=[processing_status, chunk_plot, processing_summary]
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
answer_btn.click(
|
| 382 |
+
fn=answer_question,
|
| 383 |
+
inputs=[question_input, k_retrieval],
|
| 384 |
+
outputs=[answer_output, similarity_plot, retrieved_chunks, confidence_gauge]
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
# Footer
|
| 388 |
+
gr.Markdown("""
|
| 389 |
+
---
|
| 390 |
+
<div style="text-align: center; color: #666; padding: 1rem;">
|
| 391 |
+
🔍 RAG Pipeline Demo | Built with ❤️ using Gradio, Hugging Face, and FAISS<br>
|
| 392 |
+
🤗 Models: sentence-transformers/all-mpnet-base-v2 | deepset/roberta-base-squad2
|
| 393 |
+
</div>
|
| 394 |
+
""")
|
| 395 |
+
|
| 396 |
+
return interface
|
| 397 |
+
|
| 398 |
+
# Launch the app for Hugging Face Spaces
|
| 399 |
+
if __name__ == "__main__":
|
| 400 |
+
interface = create_interface()
|
| 401 |
+
interface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers>=4.21.0
|
| 2 |
+
sentence-transformers>=2.2.0
|
| 3 |
+
torch>=1.11.0
|
| 4 |
+
faiss-cpu>=1.7.0
|
| 5 |
+
wikipedia>=1.4.0
|
| 6 |
+
gradio>=4.0.0
|
| 7 |
+
plotly>=5.0.0
|
| 8 |
+
numpy>=1.21.0
|
| 9 |
+
scipy>=1.7.0
|
| 10 |
+
pandas>=1.3.0
|