File size: 23,985 Bytes
47c088f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0e0cf1
e38ffbc
47c088f
 
e38ffbc
47c088f
8d93a7c
 
 
a0e0cf1
 
 
27ec6d9
8d93a7c
27ec6d9
 
a0e0cf1
 
 
27ec6d9
8d93a7c
a0e0cf1
8d93a7c
 
 
27ec6d9
 
8d93a7c
 
27ec6d9
 
8d93a7c
 
27ec6d9
8d93a7c
 
 
 
 
27ec6d9
 
8d93a7c
27ec6d9
 
 
 
8d93a7c
27ec6d9
 
8d93a7c
 
 
 
 
 
 
 
27ec6d9
a0e0cf1
 
 
 
47c088f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0e0cf1
47c088f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d93a7c
 
 
 
 
 
 
 
 
 
a0e0cf1
8d93a7c
a0e0cf1
8d93a7c
a0e0cf1
8d93a7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0e0cf1
8d93a7c
 
 
47c088f
 
8d93a7c
47c088f
 
27ec6d9
47c088f
 
 
 
 
 
27ec6d9
 
47c088f
27ec6d9
8d93a7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47c088f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import streamlit as st
import yfinance as yf
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from datetime import datetime, timedelta
import requests
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import StandardScaler
from catboost import CatBoostRegressor
import shap
import ta
import matplotlib.pyplot as plt
import warnings
import openai

warnings.filterwarnings('ignore')

# Initialize the OpenAI client
OPENAI_API_KEY = "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"  # Replace with your actual OpenAI API key
openai.api_key = OPENAI_API_KEY
# Alpha Vantage API key
ALPHA_VANTAGE_API_KEY = "JK0DVDNTEYBTBP5L"

# GPT Assistant ID
ASSISTANT_ID = "asst_Fl3rRrRijb8FJDpqjBexfUBp"

# Custom CSS
st.markdown("""
<style>
    .reportview-container {
        background: linear-gradient(to bottom right, #10161e, #1f2937);
    }
    .main .block-container {
        padding-top: 2rem;
        padding-bottom: 2rem;
    }
    h1, h2, h3 {
        color: #3db892;
    }
    .stButton > button {
        color: white;
        background-color: #3db892;
        border-radius: 5px;
        border: none;
        padding: 0.5rem 1rem;
        font-weight: bold;
        transition: all 0.3s ease 0s;
    }
    .stButton > button:hover {
        background-color: #2c8d6f;
    }
    .stTextInput > div > div > input,
    .stDateInput > div > div > input {
        background-color: #1f2937;
        color: white;
        border: 1px solid #3db892;
    }
    .stPlotlyChart {
        background-color: #1f2937;
        border-radius: 5px;
        padding: 10px;
    }
    .css-1d391kg {
        background-color: #1f2937;
    }
    .stDataFrame {
        background-color: #1f2937;
    }
    .stTable {
        background-color: #1f2937;
    }
    .css-1s0xp3b {
        background-color: #1f2937;
        border: 1px solid #3db892;
        border-radius: 5px;
    }
</style>
""", unsafe_allow_html=True)

def get_financial_data(ticker, end_date):
    base_url = "https://www.alphavantage.co/query"
    functions = ['INCOME_STATEMENT', 'BALANCE_SHEET', 'CASH_FLOW']
    data = {}

    for function in functions:
        params = {
            "function": function,
            "symbol": ticker,
            "apikey": ALPHA_VANTAGE_API_KEY
        }
        response = requests.get(base_url, params=params)
        if response.status_code == 200:
            data[function] = response.json()
        else:
            raise Exception(f"Failed to fetch {function} data: {response.status_code}")

    for function, content in data.items():
        if 'quarterlyReports' in content:
            content['quarterlyReports'] = [
                report for report in content['quarterlyReports']
                if datetime.strptime(report['fiscalDateEnding'], '%Y-%m-%d').date() <= end_date
            ]
        if 'annualReports' in content:
            content['annualReports'] = [
                report for report in content['annualReports']
                if datetime.strptime(report['fiscalDateEnding'], '%Y-%m-%d').date() <= end_date
            ]

    return data

def get_earnings_dates(ticker):
    url = f"https://www.alphavantage.co/query?function=EARNINGS&symbol={ticker}&apikey={ALPHA_VANTAGE_API_KEY}"
    response = requests.get(url)
    data = response.json()
    
    earnings_dates = {}
    for report in data.get('quarterlyEarnings', []):
        fiscal_date = report['fiscalDateEnding']
        reported_date = report['reportedDate']
        earnings_dates[fiscal_date] = reported_date
    
    return earnings_dates

def get_earnings_data(ticker):
    url = f"https://www.alphavantage.co/query?function=EARNINGS&symbol={ticker}&apikey={ALPHA_VANTAGE_API_KEY}"
    response = requests.get(url)
    data = response.json()
    
    quarterly_earnings = data.get('quarterlyEarnings', [])
    df = pd.DataFrame(quarterly_earnings)
    df['fiscalDateEnding'] = pd.to_datetime(df['fiscalDateEnding'])
    df['reportedDate'] = pd.to_datetime(df['reportedDate'])
    df = df.set_index('reportedDate')
    
    numeric_columns = ['reportedEPS', 'estimatedEPS', 'surprise', 'surprisePercentage']
    for col in numeric_columns:
        df[col] = pd.to_numeric(df[col], errors='coerce')
    
    return df

def process_financial_data(data, earnings_dates, earnings_data):
    quarterly_data = {}

    for statement_type, statement_data in data.items():
        if 'quarterlyReports' in statement_data:
            for report in statement_data['quarterlyReports']:
                fiscal_date = report['fiscalDateEnding']
                release_date = earnings_dates.get(fiscal_date, fiscal_date)
                if release_date not in quarterly_data:
                    quarterly_data[release_date] = {}
                quarterly_data[release_date].update({f"{statement_type}_{k}": v for k, v in report.items()})

    df = pd.DataFrame.from_dict(quarterly_data, orient='index')
    df.index = pd.to_datetime(df.index)
    df = df.sort_index()

    df = df.join(earnings_data, how='left')

    for col in df.columns:
        df[col] = pd.to_numeric(df[col], errors='coerce')

    return df

def get_stock_data(ticker, start_date, end_date):
    df = yf.download(ticker, start=start_date, end=end_date)
    
    df['Price_Pct_Change'] = df['Close'].pct_change()
    
    df['RSI'] = ta.momentum.RSIIndicator(df['Close']).rsi()
    df['WILLR'] = ta.momentum.WilliamsRIndicator(df['High'], df['Low'], df['Close']).williams_r()
    bb = ta.volatility.BollingerBands(df['Close'])
    df['BB_upper'] = bb.bollinger_hband()
    df['BB_middle'] = bb.bollinger_mavg()
    df['BB_lower'] = bb.bollinger_lband()
    df['OBV'] = ta.volume.OnBalanceVolumeIndicator(df['Close'], df['Volume']).on_balance_volume()
    df['ATR'] = ta.volatility.AverageTrueRange(df['High'], df['Low'], df['Close']).average_true_range()
    df['MACD'] = ta.trend.MACD(df['Close']).macd()
    df['ADX'] = ta.trend.ADXIndicator(df['High'], df['Low'], df['Close']).adx()
    df['CCI'] = ta.trend.CCIIndicator(df['High'], df['Low'], df['Close']).cci()
    
    indicator_columns = ['RSI', 'WILLR', 'BB_upper', 'BB_middle', 'BB_lower', 'OBV', 'ATR', 'MACD', 'ADX', 'CCI']
    for column in indicator_columns:
        df[f'{column}_ROC'] = df[column].pct_change()
    
    return df

def add_financial_ratios(X):
    def safe_divide(a, b):
        return np.where(b != 0, a / b, np.nan)
    
    X['PE_Ratio'] = safe_divide(X['BALANCE_SHEET_totalShareholderEquity'], X['INCOME_STATEMENT_netIncome'])
    X['PB_Ratio'] = safe_divide(X['BALANCE_SHEET_totalAssets'], X['BALANCE_SHEET_totalShareholderEquity'])
    X['Debt_to_Equity'] = safe_divide(X['BALANCE_SHEET_totalLiabilities'], X['BALANCE_SHEET_totalShareholderEquity'])
    X['ROE'] = safe_divide(X['INCOME_STATEMENT_netIncome'], X['BALANCE_SHEET_totalShareholderEquity'])
    X['ROA'] = safe_divide(X['INCOME_STATEMENT_netIncome'], X['BALANCE_SHEET_totalAssets'])
    
    return X

def prepare_data(quarterly_df, stock_df, end_date):
    quarterly_df.index = pd.to_datetime(quarterly_df.index).date
    stock_df.index = pd.to_datetime(stock_df.index).date

    quarterly_df = quarterly_df[quarterly_df.index <= end_date]
    stock_df = stock_df[stock_df.index <= end_date]

    start_date = min(quarterly_df.index.min(), stock_df.index.min())
    all_dates = pd.date_range(start=start_date, end=end_date, freq='D').date

    quarterly_df_reindexed = quarterly_df.reindex(all_dates).ffill()
    stock_df_reindexed = stock_df.reindex(all_dates).ffill()

    merged_df = pd.concat([stock_df_reindexed['Close'], quarterly_df_reindexed], axis=1)

    merged_df = merged_df.dropna(subset=['Close'])

    if merged_df.empty:
        raise ValueError("No overlapping data between stock prices and financial statements.")

    X = merged_df.drop('Close', axis=1)
    y = merged_df['Close']

    X = X.fillna(X.mean())

    X['EPS_Surprise'] = X['reportedEPS'] - X['estimatedEPS']
    X['EPS_Surprise_Percentage'] = X['surprisePercentage']

    X = add_financial_ratios(X)

    scaler_X = StandardScaler()
    scaler_y = StandardScaler()

    X_scaled = pd.DataFrame(scaler_X.fit_transform(X), columns=X.columns, index=X.index)
    y_scaled = pd.Series(scaler_y.fit_transform(y.values.reshape(-1, 1)).flatten(), index=y.index)

    return X_scaled, y_scaled, merged_df.index, scaler_X, scaler_y

def train_catboost_model(X_train, X_test, y_train, y_test):
    model = CatBoostRegressor(
        iterations=1000,
        learning_rate=0.1,
        depth=6,
        loss_function='RMSE',
        random_state=42,
        verbose=100
    )
    model.fit(X_train, y_train, eval_set=(X_test, y_test), early_stopping_rounds=50)
    return model

def evaluate_model(model, X_test, y_test, scaler_y):
    y_pred_scaled = model.predict(X_test)
    y_pred = scaler_y.inverse_transform(y_pred_scaled.reshape(-1, 1)).flatten()
    y_test_unscaled = scaler_y.inverse_transform(y_test.values.reshape(-1, 1)).flatten()

    mse = mean_squared_error(y_test_unscaled, y_pred)
    r2 = r2_score(y_test_unscaled, y_pred)
    return r2

def conformal_prediction(model, X_train, y_train, X_test, scaler_y, alpha=0.1):
    model.fit(X_train, y_train)
    y_pred_train = model.predict(X_train)

    y_pred_train_unscaled = scaler_y.inverse_transform(y_pred_train.reshape(-1, 1)).flatten()
    y_train_unscaled = scaler_y.inverse_transform(y_train.values.reshape(-1, 1)).flatten()

    relative_errors = np.abs((y_train_unscaled - y_pred_train_unscaled) / y_pred_train_unscaled)

    error_threshold = np.percentile(relative_errors, (1 - alpha) * 100)

    y_pred_test = model.predict(X_test)
    y_pred_test_unscaled = scaler_y.inverse_transform(y_pred_test.reshape(-1, 1)).flatten()

    lower_bound_unscaled = y_pred_test_unscaled * (1 - error_threshold)
    upper_bound_unscaled = y_pred_test_unscaled * (1 + error_threshold)

    return y_pred_test_unscaled, lower_bound_unscaled, upper_bound_unscaled

def plot_results(dates, y, fair_values, lower_bound, upper_bound, scaler_y):
    y_unscaled = scaler_y.inverse_transform(y.values.reshape(-1, 1)).flatten()

    fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.02, row_heights=[0.7, 0.3])

    fig.add_trace(go.Scatter(x=dates, y=y_unscaled, mode='lines', name='Actual Price', line=dict(color='blue')), row=1, col=1)
    fig.add_trace(go.Scatter(x=dates, y=fair_values, mode='lines', name='Fair Value', line=dict(color='red')), row=1, col=1)
    fig.add_trace(go.Scatter(x=dates, y=upper_bound, mode='lines', name='Upper Bound', line=dict(color='gray', width=0)), row=1, col=1)
    fig.add_trace(go.Scatter(x=dates, y=lower_bound, mode='lines', name='Lower Bound', line=dict(color='gray', width=0), fill='tonexty'), row=1, col=1)

    percent_error = ((fair_values - y_unscaled) / y_unscaled) * 100
    fig.add_trace(go.Scatter(x=dates, y=percent_error, mode='lines', name='Percent Error', line=dict(color='purple')), row=2, col=1)

    fig.update_layout(height=800, title_text="Stock Price, Fair Value, and Percent Error")
    fig.update_xaxes(title_text="Date", row=2, col=1)
    fig.update_yaxes(title_text="Price", row=1, col=1)
    fig.update_yaxes(title_text="Percent Error", row=2, col=1)

    return fig

def get_monthly_seasonality(ticker, start_date, end_date):
    data = yf.download(ticker, start=start_date, end=end_date)
    monthly_data = data['Adj Close'].resample('M').last()
    monthly_returns = monthly_data.pct_change()
    monthly_returns = monthly_returns.to_frame()
    monthly_returns['Month'] = monthly_returns.index.month
    seasonality = monthly_returns.groupby('Month')['Adj Close'].agg(['mean', 'median', 'count', lambda x: (x > 0).mean()])
    seasonality.columns = ['Mean Change%', 'Median Change%', 'Count', 'Positive Periods']
    return seasonality

def plot_monthly_seasonality(seasonality, ticker, start_date, end_date):
    months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
    fig = go.Figure()
    fig.add_trace(go.Bar(
        x=months,
        y=seasonality['Positive Periods'] * 100,
        name='Positive Periods',
        marker_color=['green' if x > 0.5 else 'red' for x in seasonality['Positive Periods']],
        text=[f"{seasonality['Positive Periods'][i]*100:.1f}%<br>{seasonality['Mean Change%'][i]*100:.2f}%" for i in range(1, 13)],
        textposition='auto'
    ))
    fig.add_trace(go.Scatter(
        x=months,
        y=seasonality['Mean Change%'] * 100,
        name='Mean Change%',
        mode='lines+markers',
        line=dict(color='yellow', width=2)
    ))
    fig.update_layout(
        title=f'Monthly Seasonality for {ticker}<br>{start_date} to {end_date}',
        xaxis_title='Month',
        yaxis_title='Percentage',
        template='plotly_dark',
        showlegend=True,
        legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
        height=600,
        margin=dict(l=50, r=50, t=100, b=50)
    )
    fig.add_hline(y=50, line_dash="dash", line_color="gray")
    fig.add_hline(y=0, line_dash="dash", line_color="gray")
    fig.update_yaxes(ticksuffix="%", range=[0, 100])
    return fig

def prepare_financial_data_for_gpt(financial_data):
    def format_financial_data(data, report_type):
        formatted_data = f"{report_type} (Last 5 Years):\n"
        if report_type in data:
            reports = data[report_type].get('annualReports', [])[:5]
            for report in reports:
                formatted_data += f"Fiscal Date Ending: {report.get('fiscalDateEnding', 'N/A')}\n"
                for key, value in report.items():
                    if key != 'fiscalDateEnding':
                        formatted_data += f"{key}: {value}\n"
                formatted_data += "\n"
        return formatted_data

    income_statement = format_financial_data(financial_data, 'INCOME_STATEMENT')
    balance_sheet = format_financial_data(financial_data, 'BALANCE_SHEET')
    cash_flow = format_financial_data(financial_data, 'CASH_FLOW')

    return f"{income_statement}\n{balance_sheet}\n{cash_flow}"

def get_gpt_analysis(ticker, financial_data):
    formatted_data = prepare_financial_data_for_gpt(financial_data)
    prompt = f"Analyze the following financial data for {ticker} and provide insights:\n\n{formatted_data}"
    
    try:
        response = openai.ChatCompletion.create(
            model="gpt-4",
            messages=[
                {"role": "system", "content": "You are a financial analyst."},
                {"role": "user", "content": prompt}
            ],
            max_tokens=500,
            n=1,
            stop=None,
            temperature=0.5,
        )
        analysis = response.choices[0].message['content'].strip()
        return analysis
    except Exception as e:
        st.error(f"OpenAI API error: {e}")
        return "GPT Assistant analysis failed. Please check the API integration."

def plot_interactive_logarithmic_stock_chart(ticker, start_date, end_date):
    stock = yf.Ticker(ticker)
    data = stock.history(start=start_date, end=end_date)

    x = (data.index - data.index[0]).days
    y = np.log(data['Close'])
    slope, intercept = np.polyfit(x, y, 1)

    future_days = 365 * 10
    all_days = np.arange(len(x) + future_days)
    log_trend = np.exp(intercept + slope * all_days)

    inner_upper_band = log_trend * 2
    inner_lower_band = log_trend / 2
    outer_upper_band = log_trend * 4
    outer_lower_band = log_trend / 4

    extended_dates = pd.date_range(start=data.index[0], periods=len(all_days), freq='D')

    fig = go.Figure()

    fig.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close Price', line=dict(color='blue')))

    fig.add_trace(go.Scatter(x=extended_dates, y=log_trend, mode='lines', name='Log Trend', line=dict(color='red')))
    fig.add_trace(go.Scatter(x=extended_dates, y=inner_upper_band, mode='lines', name='Inner Upper Band', line=dict(color='green')))
    fig.add_trace(go.Scatter(x=extended_dates, y=inner_lower_band, mode='lines', name='Inner Lower Band', line=dict(color='green')))
    fig.add_trace(go.Scatter(x=extended_dates, y=outer_upper_band, mode='lines', name='Outer Upper Band', line=dict(color='orange')))
    fig.add_trace(go.Scatter(x=extended_dates, y=outer_lower_band, mode='lines', name='Outer Lower Band', line=dict(color='orange')))

    fig.update_layout(
        title=f'{ticker} Stock Price (Logarithmic Scale) with Extended Trend Lines and Outer Bands',
        xaxis_title='Date',
        yaxis_title='Price (Log Scale)',
        yaxis_type="log",
        legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.8)'),
        hovermode='x unified',
        height=800
    )

    fig.update_xaxes(
        rangeslider_visible=True,
        rangeselector=dict(
            buttons=list([
                dict(count=1, label="1m", step="month", stepmode="backward"),
                dict(count=6, label="6m", step="month", stepmode="backward"),
                dict(count=1, label="YTD", step="year", stepmode="todate"),
                dict(count=1, label="1y", step="year", stepmode="backward"),
                dict(step="all")
            ])
        )
    )

    return fig

def analyze_stock(ticker, start_date, end_date, use_ai_assistant):
    try:
        financial_data = get_financial_data(ticker, end_date)
        earnings_dates = get_earnings_dates(ticker)
        earnings_data = get_earnings_data(ticker)
        quarterly_df = process_financial_data(financial_data, earnings_dates, earnings_data)
        stock_df = get_stock_data(ticker, start_date, end_date)

        if quarterly_df.empty:
            st.error("No financial data available for processing.")
            return None

        X_scaled, y_scaled, dates, scaler_X, scaler_y = prepare_data(quarterly_df, stock_df, end_date)

        X_train, X_test, y_train, y_test = train_test_split(X_scaled, y_scaled, test_size=0.2, random_state=42)

        model = train_catboost_model(X_train, X_test, y_train, y_test)
        
        r2 = evaluate_model(model, X_test, y_test, scaler_y)

        if r2 < 0.5:
            st.warning("Model performance is poor. Results may not be reliable.")

        fair_values, lower_bound, upper_bound = conformal_prediction(model, X_train, y_train, X_scaled, scaler_y)

        fig = plot_results(dates, y_scaled, fair_values, lower_bound, upper_bound, scaler_y)

        feature_importance = model.feature_importances_
        feature_importance_df = pd.DataFrame({'feature': X_scaled.columns, 'importance': feature_importance})
        feature_importance_df = feature_importance_df.sort_values('importance', ascending=False)

        explainer = shap.TreeExplainer(model)
        shap_values = explainer.shap_values(X_scaled)

        shap_fig, ax = plt.subplots(figsize=(10, 6))
        shap.summary_plot(shap_values, X_scaled, plot_type="bar", show=False)
        plt.title("SHAP Feature Importance")
        plt.tight_layout()

        seasonality = get_monthly_seasonality(ticker, start_date, end_date)
        seasonality_fig = plot_monthly_seasonality(seasonality, ticker, start_date, end_date)

        log_chart = plot_interactive_logarithmic_stock_chart(ticker, start_date, end_date)

        gpt_analysis = get_gpt_analysis(ticker, financial_data) if use_ai_assistant else "AI assistant analysis not requested."

        latest_close = stock_df['Close'].iloc[-1]
        latest_fair_value = fair_values[-1]
        latest_lower_bound = lower_bound[-1]
        latest_upper_bound = upper_bound[-1]

        percentage_change = ((latest_fair_value - latest_close) / latest_close) * 100

        fair_price_html = f"""
        <h2 style="margin-bottom: 15px;">Fair Price Analysis</h2>
        <p><strong>Current Price:</strong> ${latest_close:.2f}</p>
        <p><strong>Estimated Fair Value:</strong> ${latest_fair_value:.2f}</p>
        <p><strong>Price Prediction Range:</strong> ${latest_lower_bound:.2f} to ${latest_upper_bound:.2f}</p>
        <p><strong>R-squared Score:</strong> {r2:.4f}</p>
        <h3 style="margin-top: 20px;">Top 10 most important features for fair value prediction:</h3>
        <pre>{feature_importance_df.head(10).to_string(index=False)}</pre>
        """

        current_month = datetime.now().month
        next_month = (current_month % 12) + 1

        current_month_return = seasonality.loc[current_month, 'Mean Change%'] * 100
        next_month_return = seasonality.loc[next_month, 'Mean Change%'] * 100
        current_month_win_rate = seasonality.loc[current_month, 'Positive Periods'] * 100
        next_month_win_rate = seasonality.loc[next_month, 'Positive Periods'] * 100

        seasonality_html = f"""
        <h2 style="margin-bottom: 15px;">Seasonality Analysis ({start_date} to {end_date})</h2>
        <h3>Current month ({datetime.now().strftime('%B')}):</h3>
        <p>Average return: {current_month_return:.2f}%</p>
        <p>Probability of positive return: {current_month_win_rate:.1f}%</p>
        <h3>Next month ({(datetime.now() + timedelta(days=31)).strftime('%B')}):</h3>
        <p>Average return: {next_month_return:.2f}%</p>
        <p>Probability of positive return: {next_month_win_rate:.1f}%</p>
        """

        return {
            'fair_price_html': fair_price_html,
            'fig': fig,
            'shap_fig': shap_fig,
            'seasonality_fig': seasonality_fig,
            'seasonality_html': seasonality_html,
            'gpt_analysis': gpt_analysis,
            'log_chart': log_chart,
            'feature_importance_df': feature_importance_df.head(10),
            'percentage_change': percentage_change
        }

    except Exception as e:
        st.error(f"An error occurred: {str(e)}")
        return None

def main():
    st.title("Advanced Stock Analysis App")
    st.markdown("Enter a stock ticker and date range to perform comprehensive stock analysis.")

    col1, col2, col3, col4 = st.columns([2,2,2,1])
    with col1:
        ticker = st.text_input("Stock Ticker", value="MSFT")
    with col2:
        start_date = st.date_input("Start Date", value=datetime(2015, 1, 1))
    with col3:
        end_date = st.date_input("End Date", value=datetime.now())
    with col4:
        use_ai_assistant = st.checkbox("Use AI Assistant")

    if st.button("Analyze Stock", key="analyze_button"):
        with st.spinner('Analyzing stock data...'):
            results = analyze_stock(ticker, start_date, end_date, use_ai_assistant)
            
            if results:
                st.header("Fair Price Analysis")
                st.markdown(results['fair_price_html'], unsafe_allow_html=True)

                st.subheader("Fair Price Prediction")
                st.plotly_chart(results['fig'], use_container_width=True)

                col1, col2 = st.columns(2)
                with col1:
                    st.subheader("SHAP Feature Importance")
                    st.pyplot(results['shap_fig'])
                with col2:
                    st.subheader("Top 10 Important Features")
                    st.dataframe(results['feature_importance_df'], height=400)

                st.subheader("Monthly Seasonality")
                st.plotly_chart(results['seasonality_fig'], use_container_width=True)
                st.markdown(results['seasonality_html'], unsafe_allow_html=True)

                if results['gpt_analysis'] != "AI assistant analysis not requested.":
                    st.subheader("AI Assistant Analysis")
                    st.text_area("Analysis", value=results['gpt_analysis'], height=300)

                st.subheader("Logarithmic Stock Chart")
                st.plotly_chart(results['log_chart'], use_container_width=True)

if __name__ == "__main__":
    main()