Spaces:
Sleeping
Sleeping
File size: 23,985 Bytes
47c088f a0e0cf1 e38ffbc 47c088f e38ffbc 47c088f 8d93a7c a0e0cf1 27ec6d9 8d93a7c 27ec6d9 a0e0cf1 27ec6d9 8d93a7c a0e0cf1 8d93a7c 27ec6d9 8d93a7c 27ec6d9 8d93a7c 27ec6d9 8d93a7c 27ec6d9 8d93a7c 27ec6d9 8d93a7c 27ec6d9 8d93a7c 27ec6d9 a0e0cf1 47c088f a0e0cf1 47c088f 8d93a7c a0e0cf1 8d93a7c a0e0cf1 8d93a7c a0e0cf1 8d93a7c a0e0cf1 8d93a7c 47c088f 8d93a7c 47c088f 27ec6d9 47c088f 27ec6d9 47c088f 27ec6d9 8d93a7c 47c088f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
import streamlit as st
import yfinance as yf
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from datetime import datetime, timedelta
import requests
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import StandardScaler
from catboost import CatBoostRegressor
import shap
import ta
import matplotlib.pyplot as plt
import warnings
import openai
warnings.filterwarnings('ignore')
# Initialize the OpenAI client
OPENAI_API_KEY = "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" # Replace with your actual OpenAI API key
openai.api_key = OPENAI_API_KEY
# Alpha Vantage API key
ALPHA_VANTAGE_API_KEY = "JK0DVDNTEYBTBP5L"
# GPT Assistant ID
ASSISTANT_ID = "asst_Fl3rRrRijb8FJDpqjBexfUBp"
# Custom CSS
st.markdown("""
<style>
.reportview-container {
background: linear-gradient(to bottom right, #10161e, #1f2937);
}
.main .block-container {
padding-top: 2rem;
padding-bottom: 2rem;
}
h1, h2, h3 {
color: #3db892;
}
.stButton > button {
color: white;
background-color: #3db892;
border-radius: 5px;
border: none;
padding: 0.5rem 1rem;
font-weight: bold;
transition: all 0.3s ease 0s;
}
.stButton > button:hover {
background-color: #2c8d6f;
}
.stTextInput > div > div > input,
.stDateInput > div > div > input {
background-color: #1f2937;
color: white;
border: 1px solid #3db892;
}
.stPlotlyChart {
background-color: #1f2937;
border-radius: 5px;
padding: 10px;
}
.css-1d391kg {
background-color: #1f2937;
}
.stDataFrame {
background-color: #1f2937;
}
.stTable {
background-color: #1f2937;
}
.css-1s0xp3b {
background-color: #1f2937;
border: 1px solid #3db892;
border-radius: 5px;
}
</style>
""", unsafe_allow_html=True)
def get_financial_data(ticker, end_date):
base_url = "https://www.alphavantage.co/query"
functions = ['INCOME_STATEMENT', 'BALANCE_SHEET', 'CASH_FLOW']
data = {}
for function in functions:
params = {
"function": function,
"symbol": ticker,
"apikey": ALPHA_VANTAGE_API_KEY
}
response = requests.get(base_url, params=params)
if response.status_code == 200:
data[function] = response.json()
else:
raise Exception(f"Failed to fetch {function} data: {response.status_code}")
for function, content in data.items():
if 'quarterlyReports' in content:
content['quarterlyReports'] = [
report for report in content['quarterlyReports']
if datetime.strptime(report['fiscalDateEnding'], '%Y-%m-%d').date() <= end_date
]
if 'annualReports' in content:
content['annualReports'] = [
report for report in content['annualReports']
if datetime.strptime(report['fiscalDateEnding'], '%Y-%m-%d').date() <= end_date
]
return data
def get_earnings_dates(ticker):
url = f"https://www.alphavantage.co/query?function=EARNINGS&symbol={ticker}&apikey={ALPHA_VANTAGE_API_KEY}"
response = requests.get(url)
data = response.json()
earnings_dates = {}
for report in data.get('quarterlyEarnings', []):
fiscal_date = report['fiscalDateEnding']
reported_date = report['reportedDate']
earnings_dates[fiscal_date] = reported_date
return earnings_dates
def get_earnings_data(ticker):
url = f"https://www.alphavantage.co/query?function=EARNINGS&symbol={ticker}&apikey={ALPHA_VANTAGE_API_KEY}"
response = requests.get(url)
data = response.json()
quarterly_earnings = data.get('quarterlyEarnings', [])
df = pd.DataFrame(quarterly_earnings)
df['fiscalDateEnding'] = pd.to_datetime(df['fiscalDateEnding'])
df['reportedDate'] = pd.to_datetime(df['reportedDate'])
df = df.set_index('reportedDate')
numeric_columns = ['reportedEPS', 'estimatedEPS', 'surprise', 'surprisePercentage']
for col in numeric_columns:
df[col] = pd.to_numeric(df[col], errors='coerce')
return df
def process_financial_data(data, earnings_dates, earnings_data):
quarterly_data = {}
for statement_type, statement_data in data.items():
if 'quarterlyReports' in statement_data:
for report in statement_data['quarterlyReports']:
fiscal_date = report['fiscalDateEnding']
release_date = earnings_dates.get(fiscal_date, fiscal_date)
if release_date not in quarterly_data:
quarterly_data[release_date] = {}
quarterly_data[release_date].update({f"{statement_type}_{k}": v for k, v in report.items()})
df = pd.DataFrame.from_dict(quarterly_data, orient='index')
df.index = pd.to_datetime(df.index)
df = df.sort_index()
df = df.join(earnings_data, how='left')
for col in df.columns:
df[col] = pd.to_numeric(df[col], errors='coerce')
return df
def get_stock_data(ticker, start_date, end_date):
df = yf.download(ticker, start=start_date, end=end_date)
df['Price_Pct_Change'] = df['Close'].pct_change()
df['RSI'] = ta.momentum.RSIIndicator(df['Close']).rsi()
df['WILLR'] = ta.momentum.WilliamsRIndicator(df['High'], df['Low'], df['Close']).williams_r()
bb = ta.volatility.BollingerBands(df['Close'])
df['BB_upper'] = bb.bollinger_hband()
df['BB_middle'] = bb.bollinger_mavg()
df['BB_lower'] = bb.bollinger_lband()
df['OBV'] = ta.volume.OnBalanceVolumeIndicator(df['Close'], df['Volume']).on_balance_volume()
df['ATR'] = ta.volatility.AverageTrueRange(df['High'], df['Low'], df['Close']).average_true_range()
df['MACD'] = ta.trend.MACD(df['Close']).macd()
df['ADX'] = ta.trend.ADXIndicator(df['High'], df['Low'], df['Close']).adx()
df['CCI'] = ta.trend.CCIIndicator(df['High'], df['Low'], df['Close']).cci()
indicator_columns = ['RSI', 'WILLR', 'BB_upper', 'BB_middle', 'BB_lower', 'OBV', 'ATR', 'MACD', 'ADX', 'CCI']
for column in indicator_columns:
df[f'{column}_ROC'] = df[column].pct_change()
return df
def add_financial_ratios(X):
def safe_divide(a, b):
return np.where(b != 0, a / b, np.nan)
X['PE_Ratio'] = safe_divide(X['BALANCE_SHEET_totalShareholderEquity'], X['INCOME_STATEMENT_netIncome'])
X['PB_Ratio'] = safe_divide(X['BALANCE_SHEET_totalAssets'], X['BALANCE_SHEET_totalShareholderEquity'])
X['Debt_to_Equity'] = safe_divide(X['BALANCE_SHEET_totalLiabilities'], X['BALANCE_SHEET_totalShareholderEquity'])
X['ROE'] = safe_divide(X['INCOME_STATEMENT_netIncome'], X['BALANCE_SHEET_totalShareholderEquity'])
X['ROA'] = safe_divide(X['INCOME_STATEMENT_netIncome'], X['BALANCE_SHEET_totalAssets'])
return X
def prepare_data(quarterly_df, stock_df, end_date):
quarterly_df.index = pd.to_datetime(quarterly_df.index).date
stock_df.index = pd.to_datetime(stock_df.index).date
quarterly_df = quarterly_df[quarterly_df.index <= end_date]
stock_df = stock_df[stock_df.index <= end_date]
start_date = min(quarterly_df.index.min(), stock_df.index.min())
all_dates = pd.date_range(start=start_date, end=end_date, freq='D').date
quarterly_df_reindexed = quarterly_df.reindex(all_dates).ffill()
stock_df_reindexed = stock_df.reindex(all_dates).ffill()
merged_df = pd.concat([stock_df_reindexed['Close'], quarterly_df_reindexed], axis=1)
merged_df = merged_df.dropna(subset=['Close'])
if merged_df.empty:
raise ValueError("No overlapping data between stock prices and financial statements.")
X = merged_df.drop('Close', axis=1)
y = merged_df['Close']
X = X.fillna(X.mean())
X['EPS_Surprise'] = X['reportedEPS'] - X['estimatedEPS']
X['EPS_Surprise_Percentage'] = X['surprisePercentage']
X = add_financial_ratios(X)
scaler_X = StandardScaler()
scaler_y = StandardScaler()
X_scaled = pd.DataFrame(scaler_X.fit_transform(X), columns=X.columns, index=X.index)
y_scaled = pd.Series(scaler_y.fit_transform(y.values.reshape(-1, 1)).flatten(), index=y.index)
return X_scaled, y_scaled, merged_df.index, scaler_X, scaler_y
def train_catboost_model(X_train, X_test, y_train, y_test):
model = CatBoostRegressor(
iterations=1000,
learning_rate=0.1,
depth=6,
loss_function='RMSE',
random_state=42,
verbose=100
)
model.fit(X_train, y_train, eval_set=(X_test, y_test), early_stopping_rounds=50)
return model
def evaluate_model(model, X_test, y_test, scaler_y):
y_pred_scaled = model.predict(X_test)
y_pred = scaler_y.inverse_transform(y_pred_scaled.reshape(-1, 1)).flatten()
y_test_unscaled = scaler_y.inverse_transform(y_test.values.reshape(-1, 1)).flatten()
mse = mean_squared_error(y_test_unscaled, y_pred)
r2 = r2_score(y_test_unscaled, y_pred)
return r2
def conformal_prediction(model, X_train, y_train, X_test, scaler_y, alpha=0.1):
model.fit(X_train, y_train)
y_pred_train = model.predict(X_train)
y_pred_train_unscaled = scaler_y.inverse_transform(y_pred_train.reshape(-1, 1)).flatten()
y_train_unscaled = scaler_y.inverse_transform(y_train.values.reshape(-1, 1)).flatten()
relative_errors = np.abs((y_train_unscaled - y_pred_train_unscaled) / y_pred_train_unscaled)
error_threshold = np.percentile(relative_errors, (1 - alpha) * 100)
y_pred_test = model.predict(X_test)
y_pred_test_unscaled = scaler_y.inverse_transform(y_pred_test.reshape(-1, 1)).flatten()
lower_bound_unscaled = y_pred_test_unscaled * (1 - error_threshold)
upper_bound_unscaled = y_pred_test_unscaled * (1 + error_threshold)
return y_pred_test_unscaled, lower_bound_unscaled, upper_bound_unscaled
def plot_results(dates, y, fair_values, lower_bound, upper_bound, scaler_y):
y_unscaled = scaler_y.inverse_transform(y.values.reshape(-1, 1)).flatten()
fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.02, row_heights=[0.7, 0.3])
fig.add_trace(go.Scatter(x=dates, y=y_unscaled, mode='lines', name='Actual Price', line=dict(color='blue')), row=1, col=1)
fig.add_trace(go.Scatter(x=dates, y=fair_values, mode='lines', name='Fair Value', line=dict(color='red')), row=1, col=1)
fig.add_trace(go.Scatter(x=dates, y=upper_bound, mode='lines', name='Upper Bound', line=dict(color='gray', width=0)), row=1, col=1)
fig.add_trace(go.Scatter(x=dates, y=lower_bound, mode='lines', name='Lower Bound', line=dict(color='gray', width=0), fill='tonexty'), row=1, col=1)
percent_error = ((fair_values - y_unscaled) / y_unscaled) * 100
fig.add_trace(go.Scatter(x=dates, y=percent_error, mode='lines', name='Percent Error', line=dict(color='purple')), row=2, col=1)
fig.update_layout(height=800, title_text="Stock Price, Fair Value, and Percent Error")
fig.update_xaxes(title_text="Date", row=2, col=1)
fig.update_yaxes(title_text="Price", row=1, col=1)
fig.update_yaxes(title_text="Percent Error", row=2, col=1)
return fig
def get_monthly_seasonality(ticker, start_date, end_date):
data = yf.download(ticker, start=start_date, end=end_date)
monthly_data = data['Adj Close'].resample('M').last()
monthly_returns = monthly_data.pct_change()
monthly_returns = monthly_returns.to_frame()
monthly_returns['Month'] = monthly_returns.index.month
seasonality = monthly_returns.groupby('Month')['Adj Close'].agg(['mean', 'median', 'count', lambda x: (x > 0).mean()])
seasonality.columns = ['Mean Change%', 'Median Change%', 'Count', 'Positive Periods']
return seasonality
def plot_monthly_seasonality(seasonality, ticker, start_date, end_date):
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
fig = go.Figure()
fig.add_trace(go.Bar(
x=months,
y=seasonality['Positive Periods'] * 100,
name='Positive Periods',
marker_color=['green' if x > 0.5 else 'red' for x in seasonality['Positive Periods']],
text=[f"{seasonality['Positive Periods'][i]*100:.1f}%<br>{seasonality['Mean Change%'][i]*100:.2f}%" for i in range(1, 13)],
textposition='auto'
))
fig.add_trace(go.Scatter(
x=months,
y=seasonality['Mean Change%'] * 100,
name='Mean Change%',
mode='lines+markers',
line=dict(color='yellow', width=2)
))
fig.update_layout(
title=f'Monthly Seasonality for {ticker}<br>{start_date} to {end_date}',
xaxis_title='Month',
yaxis_title='Percentage',
template='plotly_dark',
showlegend=True,
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
height=600,
margin=dict(l=50, r=50, t=100, b=50)
)
fig.add_hline(y=50, line_dash="dash", line_color="gray")
fig.add_hline(y=0, line_dash="dash", line_color="gray")
fig.update_yaxes(ticksuffix="%", range=[0, 100])
return fig
def prepare_financial_data_for_gpt(financial_data):
def format_financial_data(data, report_type):
formatted_data = f"{report_type} (Last 5 Years):\n"
if report_type in data:
reports = data[report_type].get('annualReports', [])[:5]
for report in reports:
formatted_data += f"Fiscal Date Ending: {report.get('fiscalDateEnding', 'N/A')}\n"
for key, value in report.items():
if key != 'fiscalDateEnding':
formatted_data += f"{key}: {value}\n"
formatted_data += "\n"
return formatted_data
income_statement = format_financial_data(financial_data, 'INCOME_STATEMENT')
balance_sheet = format_financial_data(financial_data, 'BALANCE_SHEET')
cash_flow = format_financial_data(financial_data, 'CASH_FLOW')
return f"{income_statement}\n{balance_sheet}\n{cash_flow}"
def get_gpt_analysis(ticker, financial_data):
formatted_data = prepare_financial_data_for_gpt(financial_data)
prompt = f"Analyze the following financial data for {ticker} and provide insights:\n\n{formatted_data}"
try:
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are a financial analyst."},
{"role": "user", "content": prompt}
],
max_tokens=500,
n=1,
stop=None,
temperature=0.5,
)
analysis = response.choices[0].message['content'].strip()
return analysis
except Exception as e:
st.error(f"OpenAI API error: {e}")
return "GPT Assistant analysis failed. Please check the API integration."
def plot_interactive_logarithmic_stock_chart(ticker, start_date, end_date):
stock = yf.Ticker(ticker)
data = stock.history(start=start_date, end=end_date)
x = (data.index - data.index[0]).days
y = np.log(data['Close'])
slope, intercept = np.polyfit(x, y, 1)
future_days = 365 * 10
all_days = np.arange(len(x) + future_days)
log_trend = np.exp(intercept + slope * all_days)
inner_upper_band = log_trend * 2
inner_lower_band = log_trend / 2
outer_upper_band = log_trend * 4
outer_lower_band = log_trend / 4
extended_dates = pd.date_range(start=data.index[0], periods=len(all_days), freq='D')
fig = go.Figure()
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close Price', line=dict(color='blue')))
fig.add_trace(go.Scatter(x=extended_dates, y=log_trend, mode='lines', name='Log Trend', line=dict(color='red')))
fig.add_trace(go.Scatter(x=extended_dates, y=inner_upper_band, mode='lines', name='Inner Upper Band', line=dict(color='green')))
fig.add_trace(go.Scatter(x=extended_dates, y=inner_lower_band, mode='lines', name='Inner Lower Band', line=dict(color='green')))
fig.add_trace(go.Scatter(x=extended_dates, y=outer_upper_band, mode='lines', name='Outer Upper Band', line=dict(color='orange')))
fig.add_trace(go.Scatter(x=extended_dates, y=outer_lower_band, mode='lines', name='Outer Lower Band', line=dict(color='orange')))
fig.update_layout(
title=f'{ticker} Stock Price (Logarithmic Scale) with Extended Trend Lines and Outer Bands',
xaxis_title='Date',
yaxis_title='Price (Log Scale)',
yaxis_type="log",
legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.8)'),
hovermode='x unified',
height=800
)
fig.update_xaxes(
rangeslider_visible=True,
rangeselector=dict(
buttons=list([
dict(count=1, label="1m", step="month", stepmode="backward"),
dict(count=6, label="6m", step="month", stepmode="backward"),
dict(count=1, label="YTD", step="year", stepmode="todate"),
dict(count=1, label="1y", step="year", stepmode="backward"),
dict(step="all")
])
)
)
return fig
def analyze_stock(ticker, start_date, end_date, use_ai_assistant):
try:
financial_data = get_financial_data(ticker, end_date)
earnings_dates = get_earnings_dates(ticker)
earnings_data = get_earnings_data(ticker)
quarterly_df = process_financial_data(financial_data, earnings_dates, earnings_data)
stock_df = get_stock_data(ticker, start_date, end_date)
if quarterly_df.empty:
st.error("No financial data available for processing.")
return None
X_scaled, y_scaled, dates, scaler_X, scaler_y = prepare_data(quarterly_df, stock_df, end_date)
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y_scaled, test_size=0.2, random_state=42)
model = train_catboost_model(X_train, X_test, y_train, y_test)
r2 = evaluate_model(model, X_test, y_test, scaler_y)
if r2 < 0.5:
st.warning("Model performance is poor. Results may not be reliable.")
fair_values, lower_bound, upper_bound = conformal_prediction(model, X_train, y_train, X_scaled, scaler_y)
fig = plot_results(dates, y_scaled, fair_values, lower_bound, upper_bound, scaler_y)
feature_importance = model.feature_importances_
feature_importance_df = pd.DataFrame({'feature': X_scaled.columns, 'importance': feature_importance})
feature_importance_df = feature_importance_df.sort_values('importance', ascending=False)
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X_scaled)
shap_fig, ax = plt.subplots(figsize=(10, 6))
shap.summary_plot(shap_values, X_scaled, plot_type="bar", show=False)
plt.title("SHAP Feature Importance")
plt.tight_layout()
seasonality = get_monthly_seasonality(ticker, start_date, end_date)
seasonality_fig = plot_monthly_seasonality(seasonality, ticker, start_date, end_date)
log_chart = plot_interactive_logarithmic_stock_chart(ticker, start_date, end_date)
gpt_analysis = get_gpt_analysis(ticker, financial_data) if use_ai_assistant else "AI assistant analysis not requested."
latest_close = stock_df['Close'].iloc[-1]
latest_fair_value = fair_values[-1]
latest_lower_bound = lower_bound[-1]
latest_upper_bound = upper_bound[-1]
percentage_change = ((latest_fair_value - latest_close) / latest_close) * 100
fair_price_html = f"""
<h2 style="margin-bottom: 15px;">Fair Price Analysis</h2>
<p><strong>Current Price:</strong> ${latest_close:.2f}</p>
<p><strong>Estimated Fair Value:</strong> ${latest_fair_value:.2f}</p>
<p><strong>Price Prediction Range:</strong> ${latest_lower_bound:.2f} to ${latest_upper_bound:.2f}</p>
<p><strong>R-squared Score:</strong> {r2:.4f}</p>
<h3 style="margin-top: 20px;">Top 10 most important features for fair value prediction:</h3>
<pre>{feature_importance_df.head(10).to_string(index=False)}</pre>
"""
current_month = datetime.now().month
next_month = (current_month % 12) + 1
current_month_return = seasonality.loc[current_month, 'Mean Change%'] * 100
next_month_return = seasonality.loc[next_month, 'Mean Change%'] * 100
current_month_win_rate = seasonality.loc[current_month, 'Positive Periods'] * 100
next_month_win_rate = seasonality.loc[next_month, 'Positive Periods'] * 100
seasonality_html = f"""
<h2 style="margin-bottom: 15px;">Seasonality Analysis ({start_date} to {end_date})</h2>
<h3>Current month ({datetime.now().strftime('%B')}):</h3>
<p>Average return: {current_month_return:.2f}%</p>
<p>Probability of positive return: {current_month_win_rate:.1f}%</p>
<h3>Next month ({(datetime.now() + timedelta(days=31)).strftime('%B')}):</h3>
<p>Average return: {next_month_return:.2f}%</p>
<p>Probability of positive return: {next_month_win_rate:.1f}%</p>
"""
return {
'fair_price_html': fair_price_html,
'fig': fig,
'shap_fig': shap_fig,
'seasonality_fig': seasonality_fig,
'seasonality_html': seasonality_html,
'gpt_analysis': gpt_analysis,
'log_chart': log_chart,
'feature_importance_df': feature_importance_df.head(10),
'percentage_change': percentage_change
}
except Exception as e:
st.error(f"An error occurred: {str(e)}")
return None
def main():
st.title("Advanced Stock Analysis App")
st.markdown("Enter a stock ticker and date range to perform comprehensive stock analysis.")
col1, col2, col3, col4 = st.columns([2,2,2,1])
with col1:
ticker = st.text_input("Stock Ticker", value="MSFT")
with col2:
start_date = st.date_input("Start Date", value=datetime(2015, 1, 1))
with col3:
end_date = st.date_input("End Date", value=datetime.now())
with col4:
use_ai_assistant = st.checkbox("Use AI Assistant")
if st.button("Analyze Stock", key="analyze_button"):
with st.spinner('Analyzing stock data...'):
results = analyze_stock(ticker, start_date, end_date, use_ai_assistant)
if results:
st.header("Fair Price Analysis")
st.markdown(results['fair_price_html'], unsafe_allow_html=True)
st.subheader("Fair Price Prediction")
st.plotly_chart(results['fig'], use_container_width=True)
col1, col2 = st.columns(2)
with col1:
st.subheader("SHAP Feature Importance")
st.pyplot(results['shap_fig'])
with col2:
st.subheader("Top 10 Important Features")
st.dataframe(results['feature_importance_df'], height=400)
st.subheader("Monthly Seasonality")
st.plotly_chart(results['seasonality_fig'], use_container_width=True)
st.markdown(results['seasonality_html'], unsafe_allow_html=True)
if results['gpt_analysis'] != "AI assistant analysis not requested.":
st.subheader("AI Assistant Analysis")
st.text_area("Analysis", value=results['gpt_analysis'], height=300)
st.subheader("Logarithmic Stock Chart")
st.plotly_chart(results['log_chart'], use_container_width=True)
if __name__ == "__main__":
main() |