Spaces:
Running
Running
commit
Browse files- app.py +122 -0
- mmlu_pro_hy_results.csv +5 -0
- benchmark_results.csv → unified_exam_results.csv +2 -2
app.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly.express as px
|
| 4 |
+
|
| 5 |
+
def display_table(exam_type):
|
| 6 |
+
if exam_type == "Armenian Exams":
|
| 7 |
+
df = pd.read_csv('unified_exam_results.csv')
|
| 8 |
+
df = df.sort_values(by='Average score', ascending=False)
|
| 9 |
+
cols = df.columns.tolist()
|
| 10 |
+
cols.insert(1, cols.pop(cols.index('Average score')))
|
| 11 |
+
df = df[cols]
|
| 12 |
+
elif exam_type == "MMLU-Pro-Hy":
|
| 13 |
+
df = pd.read_csv('mmlu_pro_hy_results.csv')
|
| 14 |
+
df = df.sort_values(by='Accuracy', ascending=False)
|
| 15 |
+
return df
|
| 16 |
+
|
| 17 |
+
def create_bar_chart(exam_type, plot_column):
|
| 18 |
+
if exam_type == "Armenian Exams":
|
| 19 |
+
df = pd.read_csv('unified_exam_results.csv')
|
| 20 |
+
df = df.sort_values(by='Average score', ascending=False)
|
| 21 |
+
df = df.sort_values(by=[plot_column, 'Model'], ascending=[False, True]).reset_index(drop=True)
|
| 22 |
+
|
| 23 |
+
x_col = plot_column
|
| 24 |
+
title = f'{plot_column} per Model'
|
| 25 |
+
if plot_column == 'Average score':
|
| 26 |
+
range_max = 20
|
| 27 |
+
x_range_max = 20
|
| 28 |
+
else:
|
| 29 |
+
range_max = 20
|
| 30 |
+
x_range_max = 20
|
| 31 |
+
def get_label(score):
|
| 32 |
+
if score < 8:
|
| 33 |
+
return "Fail"
|
| 34 |
+
elif 8 <= score <= 18:
|
| 35 |
+
return "Pass"
|
| 36 |
+
else:
|
| 37 |
+
return "Distinction"
|
| 38 |
+
df['Test Result'] = df[plot_column].apply(get_label)
|
| 39 |
+
|
| 40 |
+
if plot_column in ['Average score', 'Accuracy']:
|
| 41 |
+
fig = px.bar(df,
|
| 42 |
+
x=x_col,
|
| 43 |
+
y='Model',
|
| 44 |
+
color=x_col,
|
| 45 |
+
color_continuous_scale='tealrose_r',
|
| 46 |
+
labels={x_col: plot_column, 'Model': 'Model'},
|
| 47 |
+
title=title,
|
| 48 |
+
orientation='h',
|
| 49 |
+
range_color=[0, range_max])
|
| 50 |
+
else:
|
| 51 |
+
color_discrete_map = {
|
| 52 |
+
"Fail": "#d15d80",
|
| 53 |
+
"Pass": "#edd8be",
|
| 54 |
+
"Distinction": "#059492"
|
| 55 |
+
}
|
| 56 |
+
fig = px.bar(df,
|
| 57 |
+
x=x_col,
|
| 58 |
+
y='Model',
|
| 59 |
+
color=df['Test Result'],
|
| 60 |
+
color_discrete_map=color_discrete_map,
|
| 61 |
+
labels={x_col: plot_column, 'Model': 'Model'},
|
| 62 |
+
title=title,
|
| 63 |
+
orientation='h')
|
| 64 |
+
|
| 65 |
+
fig.update_layout(
|
| 66 |
+
xaxis=dict(range=[0, x_range_max]),
|
| 67 |
+
title=dict(text=title, font=dict(size=16)),
|
| 68 |
+
xaxis_title=dict(font=dict(size=12)),
|
| 69 |
+
yaxis_title=dict(font=dict(size=12)),
|
| 70 |
+
yaxis=dict(autorange="reversed")
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
return fig
|
| 74 |
+
|
| 75 |
+
elif exam_type == "MMLU-Pro-Hy":
|
| 76 |
+
df = pd.read_csv('mmlu_pro_hy_results.csv')
|
| 77 |
+
df = df.sort_values(by='Accuracy', ascending=False)
|
| 78 |
+
x_col = 'Accuracy'
|
| 79 |
+
title = 'Accuracy per Model (MMLU-Pro-Hy)'
|
| 80 |
+
range_max = 1.0
|
| 81 |
+
x_range_max = 1.0
|
| 82 |
+
if plot_column != 'Accuracy':
|
| 83 |
+
def get_label(accuracy):
|
| 84 |
+
if accuracy < 0.5:
|
| 85 |
+
return "Low"
|
| 86 |
+
elif 0.5 <= accuracy <= 0.8:
|
| 87 |
+
return "Medium"
|
| 88 |
+
else:
|
| 89 |
+
return "High"
|
| 90 |
+
df['Test Result'] = df['Accuracy'].apply(get_label)
|
| 91 |
+
|
| 92 |
+
fig = px.bar(df,
|
| 93 |
+
x=x_col,
|
| 94 |
+
y='Model',
|
| 95 |
+
color=x_col,
|
| 96 |
+
color_continuous_scale='tealrose_r',
|
| 97 |
+
labels={x_col: plot_column, 'Model': 'Model'},
|
| 98 |
+
title=title,
|
| 99 |
+
orientation='h',
|
| 100 |
+
range_color=[0, range_max])
|
| 101 |
+
|
| 102 |
+
fig.update_layout(
|
| 103 |
+
xaxis=dict(range=[0, x_range_max]),
|
| 104 |
+
title=dict(text=title, font=dict(size=16)),
|
| 105 |
+
xaxis_title=dict(font=dict(size=12)),
|
| 106 |
+
yaxis_title=dict(font=dict(size=12)),
|
| 107 |
+
yaxis=dict(autorange="reversed")
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
return fig
|
| 111 |
+
|
| 112 |
+
with gr.Blocks() as app:
|
| 113 |
+
with gr.Tabs():
|
| 114 |
+
with gr.TabItem("Armenian Unified Exams"):
|
| 115 |
+
table_output_armenian = gr.DataFrame(value=lambda: display_table("Armenian Exams"))
|
| 116 |
+
plot_column_dropdown = gr.Dropdown(choices=['Average score', 'Armenian language exam score', 'Armenian history exam score', 'Mathematics exam score'], value='Average score', label='Select Column to Plot')
|
| 117 |
+
plot_output_armenian = gr.Plot(lambda column: create_bar_chart("Armenian Exams", column), inputs=plot_column_dropdown)
|
| 118 |
+
with gr.TabItem("MMLU-Pro-Hy"):
|
| 119 |
+
table_output_mmlu = gr.DataFrame(value=lambda: display_table("MMLU-Pro-Hy"))
|
| 120 |
+
plot_output_mmlu = gr.Plot(lambda: create_bar_chart("MMLU-Pro-Hy", 'Accuracy'))
|
| 121 |
+
|
| 122 |
+
app.launch(share=True)
|
mmlu_pro_hy_results.csv
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Model,Accuracy
|
| 2 |
+
claude-3-5-haiku-20241022,0.526
|
| 3 |
+
claude-3-5-sonnet-20241022,0.701
|
| 4 |
+
gemini-2.0-flash,0.741
|
| 5 |
+
gemini-1.5-flash,0.586
|
benchmark_results.csv → unified_exam_results.csv
RENAMED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
-
|
| 2 |
claude-3-7-sonnet-20250219,10.5,7.75,15.0,11.08
|
| 3 |
claude-3-5-sonnet-20241022,10.0,9.25,12.75,10.67
|
| 4 |
gemini-2.0-flash,5.5,6.75,17.25,9.83
|
| 5 |
gpt-4o,6.75,6.75,13.25,8.92
|
| 6 |
qwen-max-2025-01-25,7.25,4.5,14.25,8.67
|
| 7 |
gemini-1.5-flash,4.75,3.75,15.0,7.83
|
| 8 |
-
|
| 9 |
Meta-Llama-3.3-70B-Instruct,4.5,5.25,11.5,7.08
|
| 10 |
claude-3-5-haiku-20241022,5.0,3.75,10.75,6.5
|
|
|
|
| 1 |
+
Model,Armenian language exam score,Armenian history exam score,Mathematics exam score,Average score
|
| 2 |
claude-3-7-sonnet-20250219,10.5,7.75,15.0,11.08
|
| 3 |
claude-3-5-sonnet-20241022,10.0,9.25,12.75,10.67
|
| 4 |
gemini-2.0-flash,5.5,6.75,17.25,9.83
|
| 5 |
gpt-4o,6.75,6.75,13.25,8.92
|
| 6 |
qwen-max-2025-01-25,7.25,4.5,14.25,8.67
|
| 7 |
gemini-1.5-flash,4.75,3.75,15.0,7.83
|
| 8 |
+
DeepSeek-V3,5.25,5.0,12.25,7.5
|
| 9 |
Meta-Llama-3.3-70B-Instruct,4.5,5.25,11.5,7.08
|
| 10 |
claude-3-5-haiku-20241022,5.0,3.75,10.75,6.5
|