Spaces:
Running
Running
commit
Browse files- app.py +114 -107
- data_handler.py +110 -0
- logo.png +0 -0
- mmlu_pro_hy_results.csv +0 -8
- model_handler.py +80 -0
- model_results.json +581 -0
- unified_exam_results.csv +0 -10
app.py
CHANGED
|
@@ -1,115 +1,122 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import plotly.express as px
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
cols = df.columns.tolist()
|
| 10 |
-
cols.insert(1, cols.pop(cols.index('Average')))
|
| 11 |
-
df = df[cols]
|
| 12 |
-
df.rename(columns={'Armenian language and literature': 'Armenian language\nand literature'}, inplace=True)
|
| 13 |
-
df = df.round(4)
|
| 14 |
-
elif exam_type == "MMLU-Pro-Hy":
|
| 15 |
-
df = pd.read_csv('mmlu_pro_hy_results.csv')
|
| 16 |
-
subject_cols = ['Biology', 'Business', 'Chemistry', 'Computer Science', 'Economics', 'Engineering', 'Health', 'History', 'Law', 'Math', 'Other', 'Philosophy', 'Physics', 'Psychology']
|
| 17 |
-
df['Average'] = df[subject_cols].mean(axis=1)
|
| 18 |
-
df = df.sort_values(by='Average', ascending=False)
|
| 19 |
-
cols = df.columns.tolist()
|
| 20 |
-
cols.remove('Accuracy')
|
| 21 |
-
cols.insert(1, cols.pop(cols.index('Average')))
|
| 22 |
-
cols.append(cols.pop(cols.index('Other')))
|
| 23 |
-
df = df[cols]
|
| 24 |
-
df = df.round(4)
|
| 25 |
-
return df
|
| 26 |
|
| 27 |
-
def
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
color_discrete_map = {
|
| 43 |
-
"Fail": "#ff5f56",
|
| 44 |
-
"Pass": "#ffbd2e",
|
| 45 |
-
"Distinction": "#27c93f"
|
| 46 |
-
}
|
| 47 |
-
fig = px.bar(df,
|
| 48 |
-
x=x_col,
|
| 49 |
-
y='Model',
|
| 50 |
-
color=df['Test Result'],
|
| 51 |
-
color_discrete_map=color_discrete_map,
|
| 52 |
-
labels={x_col: 'Score', 'Model': 'Model'},
|
| 53 |
-
title=title,
|
| 54 |
-
orientation='h')
|
| 55 |
-
fig.update_layout(
|
| 56 |
-
xaxis=dict(range=[0, x_range_max]),
|
| 57 |
-
title=dict(text=title, font=dict(size=16)),
|
| 58 |
-
xaxis_title=dict(font=dict(size=12)),
|
| 59 |
-
yaxis_title=dict(font=dict(size=12)),
|
| 60 |
-
yaxis=dict(autorange="reversed"),
|
| 61 |
-
autosize=True
|
| 62 |
-
)
|
| 63 |
-
return fig
|
| 64 |
-
elif exam_type == "MMLU-Pro-Hy":
|
| 65 |
-
df = pd.read_csv('mmlu_pro_hy_results.csv')
|
| 66 |
-
subject_cols = ['Biology', 'Business', 'Chemistry', 'Computer Science', 'Economics', 'Engineering', 'Health', 'History', 'Law', 'Math', 'Other', 'Philosophy', 'Physics', 'Psychology']
|
| 67 |
-
df['Average'] = df[subject_cols].mean(axis=1)
|
| 68 |
-
df = df.sort_values(by=plot_column, ascending=False).reset_index(drop=True)
|
| 69 |
-
df = df.drop(columns=['Accuracy'])
|
| 70 |
-
x_col = plot_column
|
| 71 |
-
title = f'{plot_column}'
|
| 72 |
-
x_range_max = 1.0
|
| 73 |
-
fig = px.bar(df,
|
| 74 |
-
x=x_col,
|
| 75 |
-
y='Model',
|
| 76 |
-
color=x_col,
|
| 77 |
-
color_continuous_scale='Viridis',
|
| 78 |
-
labels={x_col: 'Accuracy', 'Model': 'Model'},
|
| 79 |
-
title=title,
|
| 80 |
-
orientation='h',
|
| 81 |
-
range_color=[0,1])
|
| 82 |
-
fig.update_layout(
|
| 83 |
-
xaxis=dict(range=[0, x_range_max]),
|
| 84 |
-
title=dict(text=title, font=dict(size=16)),
|
| 85 |
-
xaxis_title=dict(font=dict(size=12)),
|
| 86 |
-
yaxis_title=dict(font=dict(size=12)),
|
| 87 |
-
yaxis=dict(autorange="reversed"),
|
| 88 |
-
autosize=True
|
| 89 |
-
)
|
| 90 |
-
return fig
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
| 98 |
This benchmark contains results of various Language Models on Armenian Unified Test Exams for Armenian language and literature, Armenian history and mathematics. The scoring system is a 20-point scale, where 0-8 is a Fail, 8-18 is a Pass, and 18-20 is a Distinction.
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
This benchmark contains results of various Language Models on the MMLU-Pro benchmark, translated into Armenian. MMLU-Pro is a massive multi-task test in MCQA format. The scores represent accuracy.
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import plotly.express as px
|
| 4 |
+
from model_handler import ModelHandler
|
| 5 |
+
from data_handler import unified_exam_result_table, mmlu_result_table, unified_exam_chart, mmlu_chart
|
| 6 |
|
| 7 |
+
global_unified_exam_df = None
|
| 8 |
+
global_mmlu_df = None
|
| 9 |
+
global_output_armenian = None
|
| 10 |
+
global_output_mmlu = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
def refresh_data():
|
| 13 |
+
global global_mmlu_df, global_unified_exam_df, global_output_armenian, global_output_mmlu
|
| 14 |
+
|
| 15 |
+
model_handler = ModelHandler()
|
| 16 |
+
global_mmlu_df, global_unified_exam_df = model_handler.get_arm_bench_data()
|
| 17 |
+
|
| 18 |
+
global_output_armenian = unified_exam_result_table(global_unified_exam_df)
|
| 19 |
+
global_output_mmlu = mmlu_result_table(global_mmlu_df)
|
| 20 |
+
|
| 21 |
+
return global_output_armenian, global_output_mmlu, unified_exam_chart(global_output_armenian, 'Average'), mmlu_chart(global_output_mmlu, 'Average')
|
| 22 |
+
|
| 23 |
+
def main():
|
| 24 |
+
global global_mmlu_df, global_unified_exam_df, global_output_armenian, global_output_mmlu
|
| 25 |
+
model_handler = ModelHandler()
|
| 26 |
+
global_mmlu_df, global_unified_exam_df = model_handler.get_arm_bench_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
global_output_armenian = unified_exam_result_table(global_unified_exam_df)
|
| 29 |
+
global_output_mmlu = mmlu_result_table(global_mmlu_df)
|
| 30 |
+
|
| 31 |
+
with gr.Blocks() as app:
|
| 32 |
+
with gr.Tabs():
|
| 33 |
+
with gr.TabItem("Armenian Unified Exams"):
|
| 34 |
+
gr.Markdown("# Armenian Unified Test Exams")
|
| 35 |
+
gr.Markdown(
|
| 36 |
+
"""
|
| 37 |
This benchmark contains results of various Language Models on Armenian Unified Test Exams for Armenian language and literature, Armenian history and mathematics. The scoring system is a 20-point scale, where 0-8 is a Fail, 8-18 is a Pass, and 18-20 is a Distinction.
|
| 38 |
+
"""
|
| 39 |
+
)
|
| 40 |
+
table_output_armenian = gr.DataFrame(value=global_output_armenian)
|
| 41 |
+
plot_column_dropdown_unified_exam = gr.Dropdown(choices=['Average', 'Armenian language and literature', 'Armenian history', 'Mathematics'], value='Average', label='Select Column to Plot')
|
| 42 |
+
plot_output_armenian = gr.Plot(lambda column: unified_exam_chart(global_output_armenian, column), inputs=plot_column_dropdown_unified_exam)
|
| 43 |
+
with gr.TabItem("MMLU-Pro-Hy"):
|
| 44 |
+
gr.Markdown("# MMLU-Pro Translated to Armenian (MMLU-Pro-Hy)")
|
| 45 |
+
gr.Markdown(
|
| 46 |
+
"""
|
| 47 |
This benchmark contains results of various Language Models on the MMLU-Pro benchmark, translated into Armenian. MMLU-Pro is a massive multi-task test in MCQA format. The scores represent accuracy.
|
| 48 |
+
"""
|
| 49 |
+
)
|
| 50 |
+
table_output_mmlu = gr.DataFrame(value=global_output_mmlu)
|
| 51 |
+
subject_cols = ['Average','Biology', 'Business', 'Chemistry', 'Computer Science', 'Economics', 'Engineering', 'Health', 'History', 'Law', 'Math', 'Philosophy', 'Physics', 'Psychology','Other']
|
| 52 |
+
plot_column_dropdown_mmlu = gr.Dropdown(choices=subject_cols, value='Average', label='Select Column to Plot')
|
| 53 |
+
plot_output_mmlu = gr.Plot(lambda column: mmlu_chart(global_output_mmlu, column), inputs=plot_column_dropdown_mmlu)
|
| 54 |
+
with gr.TabItem("About"):
|
| 55 |
+
gr.Markdown("# About the Benchmark")
|
| 56 |
+
gr.Markdown(
|
| 57 |
+
"""
|
| 58 |
+
This benchmark evaluates Language Models on Armenian-specific tasks, including Armenian Unified Test Exams and a translated version of the MMLU-Pro benchmark (MMLU-Pro-Hy). It is designed to measure the models' understanding and generation capabilities in the Armenian language.
|
| 59 |
+
|
| 60 |
+
**Creator Company:** Metric AI Research Lab, Yerevan, Armenia."""
|
| 61 |
+
)
|
| 62 |
+
gr.Image("logo.png", width=200, show_label=False, show_download_button=False, show_fullscreen_button=False, show_share_button=False)
|
| 63 |
+
gr.Markdown("""
|
| 64 |
+
- [Website](https://metric.am/)
|
| 65 |
+
- [Hugging Face](https://huggingface.co/Metric-AI)
|
| 66 |
+
|
| 67 |
+
MMLU-Pro-Hy is a massive multi-task test in MCQA format, inspired by the original MMLU benchmark, adapted for the Armenian language. The Armenian Unified Exams benchmark allows for comparison with human-level knowledge.
|
| 68 |
+
"""
|
| 69 |
+
)
|
| 70 |
+
gr.Markdown("## Submission Guide")
|
| 71 |
+
gr.Markdown(
|
| 72 |
+
"""
|
| 73 |
+
To submit a model for evaluation, please follow these steps:
|
| 74 |
+
1. **Evaluate your model**:
|
| 75 |
+
- Follow the evaluation script provided here: [https://github.com/Anania-AI/Arm-LLM-Benchmark](https://github.com/Anania-AI/Arm-LLM-Benchmark)
|
| 76 |
+
2. **Format your submission file**:
|
| 77 |
+
- After evaluation, you will get a `result.json` file. Ensure the file follows this format:
|
| 78 |
+
```json
|
| 79 |
+
{
|
| 80 |
+
"mmlu_results": [
|
| 81 |
+
{
|
| 82 |
+
"category": "category_name",
|
| 83 |
+
"score": score_value
|
| 84 |
+
},
|
| 85 |
+
...
|
| 86 |
+
],
|
| 87 |
+
"unified_exam_results": [
|
| 88 |
+
{
|
| 89 |
+
"category": "category_name",
|
| 90 |
+
"score": score_value
|
| 91 |
+
},
|
| 92 |
+
...
|
| 93 |
+
]
|
| 94 |
+
}
|
| 95 |
+
```
|
| 96 |
+
3. **Submit your model**:
|
| 97 |
+
- Add the `arm_bench` tag and the `result.json` file to your model card.
|
| 98 |
+
- Click on the "Refresh Data" button in this app, and you will see your model's results.
|
| 99 |
+
"""
|
| 100 |
+
)
|
| 101 |
+
gr.Markdown("## Contributing")
|
| 102 |
+
gr.Markdown(
|
| 103 |
+
"""
|
| 104 |
+
You can contribute to this benchmark in several ways:
|
| 105 |
+
- Providing API credits for evaluating API-based models.
|
| 106 |
+
- Citing our work in your research and publications.
|
| 107 |
+
- Contributing to the development of the benchmark itself.
|
| 108 |
+
"""
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
refresh_button = gr.Button("Refresh Data")
|
| 112 |
+
refresh_button.click(
|
| 113 |
+
fn=refresh_data,
|
| 114 |
+
outputs=[table_output_armenian,
|
| 115 |
+
table_output_mmlu,
|
| 116 |
+
plot_output_armenian,
|
| 117 |
+
plot_output_mmlu],
|
| 118 |
+
)
|
| 119 |
+
app.launch(share=True, debug=True)
|
| 120 |
+
|
| 121 |
+
if __name__ == "__main__":
|
| 122 |
+
main()
|
data_handler.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly.express as px
|
| 4 |
+
from model_handler import ModelHandler
|
| 5 |
+
|
| 6 |
+
def unified_exam_result_table(unified_exam_df):
|
| 7 |
+
df = unified_exam_df.copy()
|
| 8 |
+
numeric_columns = df.select_dtypes(include=["number"])
|
| 9 |
+
df["Average"] = numeric_columns.mean(axis=1)
|
| 10 |
+
df = df.sort_values(by='Average', ascending=False).reset_index(drop=True)
|
| 11 |
+
df.insert(0, 'Rank', range(1, len(df) + 1))
|
| 12 |
+
cols = df.columns.tolist()
|
| 13 |
+
cols.insert(2, cols.pop(cols.index('Average')))
|
| 14 |
+
df = df[cols]
|
| 15 |
+
df.rename(columns={'Armenian language and literature': 'Armenian language\nand literature'}, inplace=True)
|
| 16 |
+
df = df.round(4)
|
| 17 |
+
return df
|
| 18 |
+
|
| 19 |
+
def mmlu_result_table(mmlu_df):
|
| 20 |
+
df = mmlu_df.copy()
|
| 21 |
+
numeric_columns = df.select_dtypes(include=["number"])
|
| 22 |
+
df["Average"] = numeric_columns.mean(axis=1)
|
| 23 |
+
df = df.sort_values(by='Average', ascending=False).reset_index(drop=True)
|
| 24 |
+
df.insert(0, 'Rank', range(1, len(df) + 1))
|
| 25 |
+
cols = df.columns.tolist()
|
| 26 |
+
cols.insert(2, cols.pop(cols.index('Average')))
|
| 27 |
+
cols.append(cols.pop(cols.index('Other')))
|
| 28 |
+
df = df[cols]
|
| 29 |
+
df = df.round(4)
|
| 30 |
+
return df
|
| 31 |
+
|
| 32 |
+
def unified_exam_chart(unified_exam_df, plot_column):
|
| 33 |
+
if plot_column == 'Armenian language and literature':
|
| 34 |
+
plot_column = 'Armenian language\nand literature'
|
| 35 |
+
df = unified_exam_df.copy()
|
| 36 |
+
df = df.sort_values(by=[plot_column, 'Model'], ascending=[False, True]).reset_index(drop=True)
|
| 37 |
+
x_col = plot_column
|
| 38 |
+
title = f'{plot_column}'
|
| 39 |
+
x_range_max = 20
|
| 40 |
+
def get_label(score):
|
| 41 |
+
if score < 8:
|
| 42 |
+
return "Fail"
|
| 43 |
+
elif 8 <= score <= 18:
|
| 44 |
+
return "Pass"
|
| 45 |
+
else:
|
| 46 |
+
return "Distinction"
|
| 47 |
+
df['Test Result'] = df[plot_column].apply(get_label)
|
| 48 |
+
color_discrete_map = {
|
| 49 |
+
"Fail": "#ff5f56",
|
| 50 |
+
"Pass": "#ffbd2e",
|
| 51 |
+
"Distinction": "#27c93f"
|
| 52 |
+
}
|
| 53 |
+
fig = px.bar(df,
|
| 54 |
+
x=x_col,
|
| 55 |
+
y='Model',
|
| 56 |
+
color=df['Test Result'],
|
| 57 |
+
color_discrete_map=color_discrete_map,
|
| 58 |
+
labels={x_col: 'Score', 'Model': 'Model'},
|
| 59 |
+
title=title,
|
| 60 |
+
orientation='h'
|
| 61 |
+
)
|
| 62 |
+
# max_chart_height = 600
|
| 63 |
+
|
| 64 |
+
# chart_height = df.shape[0] * 50
|
| 65 |
+
# chart_height = min(chart_height, max_chart_height)
|
| 66 |
+
|
| 67 |
+
fig.update_layout(
|
| 68 |
+
xaxis=dict(range=[0, x_range_max]),
|
| 69 |
+
title=dict(text=title, font=dict(size=16)),
|
| 70 |
+
xaxis_title=dict(font=dict(size=12)),
|
| 71 |
+
yaxis_title=dict(font=dict(size=12)),
|
| 72 |
+
yaxis=dict(autorange="reversed"),
|
| 73 |
+
# height=chart_height,
|
| 74 |
+
width=1400
|
| 75 |
+
)
|
| 76 |
+
return fig
|
| 77 |
+
|
| 78 |
+
def mmlu_chart(mmlu_df, plot_column):
|
| 79 |
+
df = mmlu_df.copy()
|
| 80 |
+
subject_cols = ['Biology', 'Business', 'Chemistry', 'Computer Science', 'Economics', 'Engineering', 'Health', 'History', 'Law', 'Math', 'Other', 'Philosophy', 'Physics', 'Psychology']
|
| 81 |
+
df['Average'] = df[subject_cols].mean(axis=1)
|
| 82 |
+
df = df.sort_values(by=plot_column, ascending=False).reset_index(drop=True)
|
| 83 |
+
x_col = plot_column
|
| 84 |
+
title = f'{plot_column}'
|
| 85 |
+
x_range_max = 1.0
|
| 86 |
+
fig = px.bar(df,
|
| 87 |
+
x=x_col,
|
| 88 |
+
y='Model',
|
| 89 |
+
color=x_col,
|
| 90 |
+
color_continuous_scale='Viridis',
|
| 91 |
+
labels={x_col: 'Accuracy', 'Model': 'Model'},
|
| 92 |
+
title=title,
|
| 93 |
+
orientation='h',
|
| 94 |
+
range_color=[0,1]
|
| 95 |
+
)
|
| 96 |
+
# max_chart_height = 600
|
| 97 |
+
|
| 98 |
+
# chart_height = df.shape[0] * 50
|
| 99 |
+
# chart_height = min(chart_height, max_chart_height)
|
| 100 |
+
|
| 101 |
+
fig.update_layout(
|
| 102 |
+
xaxis=dict(range=[0, x_range_max]),
|
| 103 |
+
title=dict(text=title, font=dict(size=16)),
|
| 104 |
+
xaxis_title=dict(font=dict(size=12)),
|
| 105 |
+
yaxis_title=dict(font=dict(size=12)),
|
| 106 |
+
yaxis=dict(autorange="reversed"),
|
| 107 |
+
# height=chart_height,
|
| 108 |
+
width=1400
|
| 109 |
+
)
|
| 110 |
+
return fig
|
logo.png
ADDED
|
mmlu_pro_hy_results.csv
DELETED
|
@@ -1,8 +0,0 @@
|
|
| 1 |
-
Model,Accuracy,Biology,Business,Chemistry,Computer Science,Economics,Engineering,Health,History,Law,Math,Other,Philosophy,Physics,Psychology
|
| 2 |
-
gpt-4o,0.685,0.8667,0.7424,0.6842,0.6176,0.7887,0.5625,0.7794,0.5517,0.5393,0.7788,0.5974,0.5476,0.6881,0.7164
|
| 3 |
-
claude-3-5-haiku-20241022,0.522,0.75,0.5758,0.5579,0.4412,0.6901,0.4125,0.5882,0.5172,0.2472,0.6018,0.3636,0.4048,0.5596,0.5672
|
| 4 |
-
claude-3-5-sonnet-20241022,0.701,0.8667,0.803,0.7579,0.7059,0.7887,0.5625,0.6618,0.6552,0.4944,0.7788,0.6494,0.5476,0.7523,0.7164
|
| 5 |
-
DeepSeek-V3,0.672,0.8167,0.8182,0.6947,0.7353,0.7887,0.5875,0.6471,0.4828,0.3596,0.8584,0.5455,0.5476,0.6881,0.7164
|
| 6 |
-
gemini-1.5-flash,0.579,0.75,0.7121,0.6947,0.5,0.7183,0.4,0.5,0.4483,0.2584,0.8319,0.3506,0.3571,0.6514,0.6567
|
| 7 |
-
gemini-2.0-flash,0.737,0.85,0.8182,0.7895,0.7353,0.8169,0.6,0.75,0.5517,0.5281,0.8673,0.6364,0.6429,0.7982,0.7612
|
| 8 |
-
Meta-Llama-3.3-70B-Instruct,0.523,0.7333,0.5303,0.5895,0.3824,0.6338,0.4875,0.5735,0.4138,0.3146,0.6018,0.3377,0.4524,0.5321,0.6119
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_handler.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from typing import Any, Dict
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from huggingface_hub import HfApi, hf_hub_download
|
| 7 |
+
|
| 8 |
+
class ModelHandler:
|
| 9 |
+
def __init__(self, model_infos_path="D:\Vscode\llm_benchmark_space\ArmBen\model_results.json"):
|
| 10 |
+
self.api = HfApi()
|
| 11 |
+
self.model_infos_path = model_infos_path
|
| 12 |
+
self.model_infos = self._load_model_infos()
|
| 13 |
+
|
| 14 |
+
def _load_model_infos(self) -> Dict:
|
| 15 |
+
if os.path.exists(self.model_infos_path):
|
| 16 |
+
with open(self.model_infos_path) as f:
|
| 17 |
+
return json.load(f)
|
| 18 |
+
return {}
|
| 19 |
+
|
| 20 |
+
def _save_model_infos(self):
|
| 21 |
+
print("Saving model infos")
|
| 22 |
+
with open(self.model_infos_path, "w") as f:
|
| 23 |
+
json.dump(self.model_infos, f, indent=4)
|
| 24 |
+
|
| 25 |
+
def get_arm_bench_data(self):
|
| 26 |
+
models = self.api.list_models(filter="arm_llm")
|
| 27 |
+
model_names = {model["model_name"] for model in self.model_infos}
|
| 28 |
+
repositories = [model.modelId for model in models]
|
| 29 |
+
|
| 30 |
+
for repo_id in repositories:
|
| 31 |
+
files = [f for f in self.api.list_repo_files(repo_id) if f == "results.json"]
|
| 32 |
+
if not files:
|
| 33 |
+
continue
|
| 34 |
+
|
| 35 |
+
for file in files:
|
| 36 |
+
model_name = repo_id
|
| 37 |
+
if model_name not in model_names:
|
| 38 |
+
try:
|
| 39 |
+
result_path = hf_hub_download(repo_id, filename=file)
|
| 40 |
+
with open(result_path) as f:
|
| 41 |
+
results = json.load(f)
|
| 42 |
+
|
| 43 |
+
self.model_infos.append({
|
| 44 |
+
"model_name": model_name,
|
| 45 |
+
"results": results
|
| 46 |
+
})
|
| 47 |
+
|
| 48 |
+
except Exception as e:
|
| 49 |
+
print(f"Error loading {model_name} - {e}")
|
| 50 |
+
continue
|
| 51 |
+
|
| 52 |
+
self._save_model_infos()
|
| 53 |
+
|
| 54 |
+
mmlu_data = []
|
| 55 |
+
unified_exam_data = []
|
| 56 |
+
|
| 57 |
+
for model in self.model_infos:
|
| 58 |
+
model_name = model["model_name"]
|
| 59 |
+
results = model.get("results", {})
|
| 60 |
+
|
| 61 |
+
mmlu_results = results.get("mmlu_results", [])
|
| 62 |
+
unified_exam_results = results.get("unified_exam_results", [])
|
| 63 |
+
|
| 64 |
+
if mmlu_results:
|
| 65 |
+
mmlu_row = {"Model": model_name}
|
| 66 |
+
for result in mmlu_results:
|
| 67 |
+
mmlu_row[result["category"]] = result["score"]
|
| 68 |
+
mmlu_data.append(mmlu_row)
|
| 69 |
+
|
| 70 |
+
if unified_exam_results:
|
| 71 |
+
unified_exam_row = {"Model": model_name}
|
| 72 |
+
for result in unified_exam_results:
|
| 73 |
+
unified_exam_row[result["category"]] = result["score"]
|
| 74 |
+
unified_exam_data.append(unified_exam_row)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
mmlu_df = pd.DataFrame(mmlu_data)
|
| 78 |
+
unified_exam_df = pd.DataFrame(unified_exam_data)
|
| 79 |
+
|
| 80 |
+
return mmlu_df, unified_exam_df
|
model_results.json
ADDED
|
@@ -0,0 +1,581 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"model_name": "claude-3-7-sonnet-20250219",
|
| 4 |
+
"results": {
|
| 5 |
+
"mmlu_results": [],
|
| 6 |
+
"unified_exam_results": [
|
| 7 |
+
{
|
| 8 |
+
"category": "Armenian language and literature",
|
| 9 |
+
"score": 10.5
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"category": "Armenian history",
|
| 13 |
+
"score": 7.75
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"category": "Mathematics",
|
| 17 |
+
"score": 15.0
|
| 18 |
+
}
|
| 19 |
+
]
|
| 20 |
+
}
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"model_name": "claude-3-5-sonnet-20241022",
|
| 24 |
+
"results": {
|
| 25 |
+
"mmlu_results": [
|
| 26 |
+
{
|
| 27 |
+
"category": "Biology",
|
| 28 |
+
"score": 0.8667
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"category": "Business",
|
| 32 |
+
"score": 0.803
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"category": "Chemistry",
|
| 36 |
+
"score": 0.7579
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"category": "Computer Science",
|
| 40 |
+
"score": 0.7059
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"category": "Economics",
|
| 44 |
+
"score": 0.7887
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"category": "Engineering",
|
| 48 |
+
"score": 0.5625
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"category": "Health",
|
| 52 |
+
"score": 0.6618
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"category": "History",
|
| 56 |
+
"score": 0.6552
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"category": "Law",
|
| 60 |
+
"score": 0.4944
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"category": "Math",
|
| 64 |
+
"score": 0.7788
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"category": "Other",
|
| 68 |
+
"score": 0.6494
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"category": "Philosophy",
|
| 72 |
+
"score": 0.5476
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"category": "Physics",
|
| 76 |
+
"score": 0.7523
|
| 77 |
+
},
|
| 78 |
+
{
|
| 79 |
+
"category": "Psychology",
|
| 80 |
+
"score": 0.7164
|
| 81 |
+
}
|
| 82 |
+
],
|
| 83 |
+
"unified_exam_results": [
|
| 84 |
+
{
|
| 85 |
+
"category": "Armenian language and literature",
|
| 86 |
+
"score": 10.0
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"category": "Armenian history",
|
| 90 |
+
"score": 9.25
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"category": "Mathematics",
|
| 94 |
+
"score": 12.75
|
| 95 |
+
}
|
| 96 |
+
]
|
| 97 |
+
}
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"model_name": "gemini-2.0-flash",
|
| 101 |
+
"results": {
|
| 102 |
+
"mmlu_results": [
|
| 103 |
+
{
|
| 104 |
+
"category": "Biology",
|
| 105 |
+
"score": 0.85
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"category": "Business",
|
| 109 |
+
"score": 0.8182
|
| 110 |
+
},
|
| 111 |
+
{
|
| 112 |
+
"category": "Chemistry",
|
| 113 |
+
"score": 0.7895
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"category": "Computer Science",
|
| 117 |
+
"score": 0.7353
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
"category": "Economics",
|
| 121 |
+
"score": 0.8169
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"category": "Engineering",
|
| 125 |
+
"score": 0.6
|
| 126 |
+
},
|
| 127 |
+
{
|
| 128 |
+
"category": "Health",
|
| 129 |
+
"score": 0.75
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"category": "History",
|
| 133 |
+
"score": 0.5517
|
| 134 |
+
},
|
| 135 |
+
{
|
| 136 |
+
"category": "Law",
|
| 137 |
+
"score": 0.5281
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"category": "Math",
|
| 141 |
+
"score": 0.8673
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"category": "Other",
|
| 145 |
+
"score": 0.6364
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"category": "Philosophy",
|
| 149 |
+
"score": 0.6429
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"category": "Physics",
|
| 153 |
+
"score": 0.7982
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"category": "Psychology",
|
| 157 |
+
"score": 0.7612
|
| 158 |
+
}
|
| 159 |
+
],
|
| 160 |
+
"unified_exam_results": [
|
| 161 |
+
{
|
| 162 |
+
"category": "Armenian language and literature",
|
| 163 |
+
"score": 5.5
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"category": "Armenian history",
|
| 167 |
+
"score": 6.75
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"category": "Mathematics",
|
| 171 |
+
"score": 17.25
|
| 172 |
+
}
|
| 173 |
+
]
|
| 174 |
+
}
|
| 175 |
+
},
|
| 176 |
+
{
|
| 177 |
+
"model_name": "gpt-4o",
|
| 178 |
+
"results": {
|
| 179 |
+
"mmlu_results": [
|
| 180 |
+
{
|
| 181 |
+
"category": "Biology",
|
| 182 |
+
"score": 0.8667
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"category": "Business",
|
| 186 |
+
"score": 0.7424
|
| 187 |
+
},
|
| 188 |
+
{
|
| 189 |
+
"category": "Chemistry",
|
| 190 |
+
"score": 0.6842
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"category": "Computer Science",
|
| 194 |
+
"score": 0.6176
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"category": "Economics",
|
| 198 |
+
"score": 0.7887
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"category": "Engineering",
|
| 202 |
+
"score": 0.5625
|
| 203 |
+
},
|
| 204 |
+
{
|
| 205 |
+
"category": "Health",
|
| 206 |
+
"score": 0.7794
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"category": "History",
|
| 210 |
+
"score": 0.5517
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"category": "Law",
|
| 214 |
+
"score": 0.5393
|
| 215 |
+
},
|
| 216 |
+
{
|
| 217 |
+
"category": "Math",
|
| 218 |
+
"score": 0.7788
|
| 219 |
+
},
|
| 220 |
+
{
|
| 221 |
+
"category": "Other",
|
| 222 |
+
"score": 0.5974
|
| 223 |
+
},
|
| 224 |
+
{
|
| 225 |
+
"category": "Philosophy",
|
| 226 |
+
"score": 0.5476
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"category": "Physics",
|
| 230 |
+
"score": 0.6881
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"category": "Psychology",
|
| 234 |
+
"score": 0.7164
|
| 235 |
+
}
|
| 236 |
+
],
|
| 237 |
+
"unified_exam_results": [
|
| 238 |
+
{
|
| 239 |
+
"category": "Armenian language and literature",
|
| 240 |
+
"score": 6.75
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"category": "Armenian history",
|
| 244 |
+
"score": 6.75
|
| 245 |
+
},
|
| 246 |
+
{
|
| 247 |
+
"category": "Mathematics",
|
| 248 |
+
"score": 13.25
|
| 249 |
+
}
|
| 250 |
+
]
|
| 251 |
+
}
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"model_name": "qwen-max-2025-01-25",
|
| 255 |
+
"results": {
|
| 256 |
+
"mmlu_results": [],
|
| 257 |
+
"unified_exam_results": [
|
| 258 |
+
{
|
| 259 |
+
"category": "Armenian language and literature",
|
| 260 |
+
"score": 7.25
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"category": "Armenian history",
|
| 264 |
+
"score": 4.5
|
| 265 |
+
},
|
| 266 |
+
{
|
| 267 |
+
"category": "Mathematics",
|
| 268 |
+
"score": 14.25
|
| 269 |
+
}
|
| 270 |
+
]
|
| 271 |
+
}
|
| 272 |
+
},
|
| 273 |
+
{
|
| 274 |
+
"model_name": "gemini-1.5-flash",
|
| 275 |
+
"results": {
|
| 276 |
+
"mmlu_results": [
|
| 277 |
+
{
|
| 278 |
+
"category": "Biology",
|
| 279 |
+
"score": 0.75
|
| 280 |
+
},
|
| 281 |
+
{
|
| 282 |
+
"category": "Business",
|
| 283 |
+
"score": 0.7121
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"category": "Chemistry",
|
| 287 |
+
"score": 0.6947
|
| 288 |
+
},
|
| 289 |
+
{
|
| 290 |
+
"category": "Computer Science",
|
| 291 |
+
"score": 0.5
|
| 292 |
+
},
|
| 293 |
+
{
|
| 294 |
+
"category": "Economics",
|
| 295 |
+
"score": 0.7183
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"category": "Engineering",
|
| 299 |
+
"score": 0.4
|
| 300 |
+
},
|
| 301 |
+
{
|
| 302 |
+
"category": "Health",
|
| 303 |
+
"score": 0.5
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"category": "History",
|
| 307 |
+
"score": 0.4483
|
| 308 |
+
},
|
| 309 |
+
{
|
| 310 |
+
"category": "Law",
|
| 311 |
+
"score": 0.2584
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"category": "Math",
|
| 315 |
+
"score": 0.8319
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"category": "Other",
|
| 319 |
+
"score": 0.3506
|
| 320 |
+
},
|
| 321 |
+
{
|
| 322 |
+
"category": "Philosophy",
|
| 323 |
+
"score": 0.3571
|
| 324 |
+
},
|
| 325 |
+
{
|
| 326 |
+
"category": "Physics",
|
| 327 |
+
"score": 0.6514
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"category": "Psychology",
|
| 331 |
+
"score": 0.6567
|
| 332 |
+
}
|
| 333 |
+
],
|
| 334 |
+
"unified_exam_results": [
|
| 335 |
+
{
|
| 336 |
+
"category": "Armenian language and literature",
|
| 337 |
+
"score": 4.75
|
| 338 |
+
},
|
| 339 |
+
{
|
| 340 |
+
"category": "Armenian history",
|
| 341 |
+
"score": 3.75
|
| 342 |
+
},
|
| 343 |
+
{
|
| 344 |
+
"category": "Mathematics",
|
| 345 |
+
"score": 15.0
|
| 346 |
+
}
|
| 347 |
+
]
|
| 348 |
+
}
|
| 349 |
+
},
|
| 350 |
+
{
|
| 351 |
+
"model_name": "DeepSeek-V3",
|
| 352 |
+
"results": {
|
| 353 |
+
"mmlu_results": [
|
| 354 |
+
{
|
| 355 |
+
"category": "Biology",
|
| 356 |
+
"score": 0.8167
|
| 357 |
+
},
|
| 358 |
+
{
|
| 359 |
+
"category": "Business",
|
| 360 |
+
"score": 0.8182
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"category": "Chemistry",
|
| 364 |
+
"score": 0.6947
|
| 365 |
+
},
|
| 366 |
+
{
|
| 367 |
+
"category": "Computer Science",
|
| 368 |
+
"score": 0.7353
|
| 369 |
+
},
|
| 370 |
+
{
|
| 371 |
+
"category": "Economics",
|
| 372 |
+
"score": 0.7887
|
| 373 |
+
},
|
| 374 |
+
{
|
| 375 |
+
"category": "Engineering",
|
| 376 |
+
"score": 0.5875
|
| 377 |
+
},
|
| 378 |
+
{
|
| 379 |
+
"category": "Health",
|
| 380 |
+
"score": 0.6471
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"category": "History",
|
| 384 |
+
"score": 0.4828
|
| 385 |
+
},
|
| 386 |
+
{
|
| 387 |
+
"category": "Law",
|
| 388 |
+
"score": 0.3596
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"category": "Math",
|
| 392 |
+
"score": 0.8584
|
| 393 |
+
},
|
| 394 |
+
{
|
| 395 |
+
"category": "Other",
|
| 396 |
+
"score": 0.5455
|
| 397 |
+
},
|
| 398 |
+
{
|
| 399 |
+
"category": "Philosophy",
|
| 400 |
+
"score": 0.5476
|
| 401 |
+
},
|
| 402 |
+
{
|
| 403 |
+
"category": "Physics",
|
| 404 |
+
"score": 0.6881
|
| 405 |
+
},
|
| 406 |
+
{
|
| 407 |
+
"category": "Psychology",
|
| 408 |
+
"score": 0.7164
|
| 409 |
+
}
|
| 410 |
+
],
|
| 411 |
+
"unified_exam_results": [
|
| 412 |
+
{
|
| 413 |
+
"category": "Armenian language and literature",
|
| 414 |
+
"score": 5.25
|
| 415 |
+
},
|
| 416 |
+
{
|
| 417 |
+
"category": "Armenian history",
|
| 418 |
+
"score": 5.0
|
| 419 |
+
},
|
| 420 |
+
{
|
| 421 |
+
"category": "Mathematics",
|
| 422 |
+
"score": 12.25
|
| 423 |
+
}
|
| 424 |
+
]
|
| 425 |
+
}
|
| 426 |
+
},
|
| 427 |
+
{
|
| 428 |
+
"model_name": "Meta-Llama-3.3-70B-Instruct",
|
| 429 |
+
"results": {
|
| 430 |
+
"mmlu_results": [
|
| 431 |
+
{
|
| 432 |
+
"category": "Biology",
|
| 433 |
+
"score": 0.7333
|
| 434 |
+
},
|
| 435 |
+
{
|
| 436 |
+
"category": "Business",
|
| 437 |
+
"score": 0.5303
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"category": "Chemistry",
|
| 441 |
+
"score": 0.5895
|
| 442 |
+
},
|
| 443 |
+
{
|
| 444 |
+
"category": "Computer Science",
|
| 445 |
+
"score": 0.3824
|
| 446 |
+
},
|
| 447 |
+
{
|
| 448 |
+
"category": "Economics",
|
| 449 |
+
"score": 0.6338
|
| 450 |
+
},
|
| 451 |
+
{
|
| 452 |
+
"category": "Engineering",
|
| 453 |
+
"score": 0.4875
|
| 454 |
+
},
|
| 455 |
+
{
|
| 456 |
+
"category": "Health",
|
| 457 |
+
"score": 0.5735
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"category": "History",
|
| 461 |
+
"score": 0.4138
|
| 462 |
+
},
|
| 463 |
+
{
|
| 464 |
+
"category": "Law",
|
| 465 |
+
"score": 0.3146
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"category": "Math",
|
| 469 |
+
"score": 0.6018
|
| 470 |
+
},
|
| 471 |
+
{
|
| 472 |
+
"category": "Other",
|
| 473 |
+
"score": 0.3377
|
| 474 |
+
},
|
| 475 |
+
{
|
| 476 |
+
"category": "Philosophy",
|
| 477 |
+
"score": 0.4524
|
| 478 |
+
},
|
| 479 |
+
{
|
| 480 |
+
"category": "Physics",
|
| 481 |
+
"score": 0.5321
|
| 482 |
+
},
|
| 483 |
+
{
|
| 484 |
+
"category": "Psychology",
|
| 485 |
+
"score": 0.6119
|
| 486 |
+
}
|
| 487 |
+
],
|
| 488 |
+
"unified_exam_results": [
|
| 489 |
+
{
|
| 490 |
+
"category": "Armenian language and literature",
|
| 491 |
+
"score": 4.5
|
| 492 |
+
},
|
| 493 |
+
{
|
| 494 |
+
"category": "Armenian history",
|
| 495 |
+
"score": 5.25
|
| 496 |
+
},
|
| 497 |
+
{
|
| 498 |
+
"category": "Mathematics",
|
| 499 |
+
"score": 11.5
|
| 500 |
+
}
|
| 501 |
+
]
|
| 502 |
+
}
|
| 503 |
+
},
|
| 504 |
+
{
|
| 505 |
+
"model_name": "claude-3-5-haiku-20241022",
|
| 506 |
+
"results": {
|
| 507 |
+
"mmlu_results": [
|
| 508 |
+
{
|
| 509 |
+
"category": "Biology",
|
| 510 |
+
"score": 0.75
|
| 511 |
+
},
|
| 512 |
+
{
|
| 513 |
+
"category": "Business",
|
| 514 |
+
"score": 0.5758
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"category": "Chemistry",
|
| 518 |
+
"score": 0.5579
|
| 519 |
+
},
|
| 520 |
+
{
|
| 521 |
+
"category": "Computer Science",
|
| 522 |
+
"score": 0.4412
|
| 523 |
+
},
|
| 524 |
+
{
|
| 525 |
+
"category": "Economics",
|
| 526 |
+
"score": 0.6901
|
| 527 |
+
},
|
| 528 |
+
{
|
| 529 |
+
"category": "Engineering",
|
| 530 |
+
"score": 0.4125
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"category": "Health",
|
| 534 |
+
"score": 0.5882
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"category": "History",
|
| 538 |
+
"score": 0.5172
|
| 539 |
+
},
|
| 540 |
+
{
|
| 541 |
+
"category": "Law",
|
| 542 |
+
"score": 0.2472
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"category": "Math",
|
| 546 |
+
"score": 0.6018
|
| 547 |
+
},
|
| 548 |
+
{
|
| 549 |
+
"category": "Other",
|
| 550 |
+
"score": 0.3636
|
| 551 |
+
},
|
| 552 |
+
{
|
| 553 |
+
"category": "Philosophy",
|
| 554 |
+
"score": 0.4048
|
| 555 |
+
},
|
| 556 |
+
{
|
| 557 |
+
"category": "Physics",
|
| 558 |
+
"score": 0.5596
|
| 559 |
+
},
|
| 560 |
+
{
|
| 561 |
+
"category": "Psychology",
|
| 562 |
+
"score": 0.5672
|
| 563 |
+
}
|
| 564 |
+
],
|
| 565 |
+
"unified_exam_results": [
|
| 566 |
+
{
|
| 567 |
+
"category": "Armenian language and literature",
|
| 568 |
+
"score": 5.0
|
| 569 |
+
},
|
| 570 |
+
{
|
| 571 |
+
"category": "Armenian history",
|
| 572 |
+
"score": 3.75
|
| 573 |
+
},
|
| 574 |
+
{
|
| 575 |
+
"category": "Mathematics",
|
| 576 |
+
"score": 10.75
|
| 577 |
+
}
|
| 578 |
+
]
|
| 579 |
+
}
|
| 580 |
+
}
|
| 581 |
+
]
|
unified_exam_results.csv
DELETED
|
@@ -1,10 +0,0 @@
|
|
| 1 |
-
Model,Armenian language and literature,Armenian history,Mathematics,Average
|
| 2 |
-
claude-3-7-sonnet-20250219,10.5,7.75,15.0,11.08
|
| 3 |
-
claude-3-5-sonnet-20241022,10.0,9.25,12.75,10.67
|
| 4 |
-
gemini-2.0-flash,5.5,6.75,17.25,9.83
|
| 5 |
-
gpt-4o,6.75,6.75,13.25,8.92
|
| 6 |
-
qwen-max-2025-01-25,7.25,4.5,14.25,8.67
|
| 7 |
-
gemini-1.5-flash,4.75,3.75,15.0,7.83
|
| 8 |
-
DeepSeek-V3,5.25,5.0,12.25,7.5
|
| 9 |
-
Meta-Llama-3.3-70B-Instruct,4.5,5.25,11.5,7.08
|
| 10 |
-
claude-3-5-haiku-20241022,5.0,3.75,10.75,6.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|