Spaces:
Sleeping
Sleeping
Batch predict fixes
Browse files
main.py
CHANGED
|
@@ -4,6 +4,7 @@ from transformers import AutoModelForSequenceClassification as modelSC, AutoToke
|
|
| 4 |
from fastapi import FastAPI
|
| 5 |
from pydantic import BaseModel
|
| 6 |
import os
|
|
|
|
| 7 |
|
| 8 |
app = FastAPI()
|
| 9 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
|
@@ -23,19 +24,20 @@ model.to(device)
|
|
| 23 |
model.eval()
|
| 24 |
|
| 25 |
class TextInput(BaseModel):
|
| 26 |
-
text: str
|
| 27 |
|
| 28 |
def predict(input):
|
| 29 |
-
inputs = modelToken(input, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
|
|
|
| 30 |
|
| 31 |
with torch.no_grad():
|
| 32 |
outputs = model(**inputs)
|
| 33 |
|
| 34 |
logits = outputs.logits
|
| 35 |
-
|
| 36 |
|
| 37 |
labels = ["positive", "neutral", "negative"]
|
| 38 |
-
return {labels[ret]}
|
| 39 |
|
| 40 |
@app.post("/predict")
|
| 41 |
def get_sentiment(data: TextInput):
|
|
|
|
| 4 |
from fastapi import FastAPI
|
| 5 |
from pydantic import BaseModel
|
| 6 |
import os
|
| 7 |
+
from typing import List
|
| 8 |
|
| 9 |
app = FastAPI()
|
| 10 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
|
|
|
| 24 |
model.eval()
|
| 25 |
|
| 26 |
class TextInput(BaseModel):
|
| 27 |
+
text: List[str]
|
| 28 |
|
| 29 |
def predict(input):
|
| 30 |
+
inputs = modelToken(input, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 31 |
+
inputs = {key: tensor.to(device) for key, tensor in inputs.items()}
|
| 32 |
|
| 33 |
with torch.no_grad():
|
| 34 |
outputs = model(**inputs)
|
| 35 |
|
| 36 |
logits = outputs.logits
|
| 37 |
+
rets = logits.argmax(dim = 1).tolist()
|
| 38 |
|
| 39 |
labels = ["positive", "neutral", "negative"]
|
| 40 |
+
return {[labels[ret] for ret in rets]}
|
| 41 |
|
| 42 |
@app.post("/predict")
|
| 43 |
def get_sentiment(data: TextInput):
|