Spaces:
Build error
Build error
Pietro Lesci
commited on
Commit
·
a66b528
1
Parent(s):
e952967
enhance: UI of FAQ and HOME
Browse files- src/pages/faq.py +16 -2
- src/pages/home.py +24 -6
src/pages/faq.py
CHANGED
|
@@ -4,11 +4,25 @@ from src.configs import Languages
|
|
| 4 |
|
| 5 |
def write(*args):
|
| 6 |
|
| 7 |
-
# ====
|
| 8 |
with st.beta_container():
|
| 9 |
st.markdown("")
|
| 10 |
st.markdown("")
|
| 11 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
st.subheader("Step 1 - Prepare your data")
|
| 13 |
st.markdown(
|
| 14 |
"""
|
|
|
|
| 4 |
|
| 5 |
def write(*args):
|
| 6 |
|
| 7 |
+
# ==== HOW IT WORKS ==== #
|
| 8 |
with st.beta_container():
|
| 9 |
st.markdown("")
|
| 10 |
st.markdown("")
|
| 11 |
+
st.markdown(
|
| 12 |
+
"""
|
| 13 |
+
Wordify makes it easy to identify words that discriminate categories in textual data.
|
| 14 |
+
|
| 15 |
+
Let's explain Wordify with an example. Imagine you are thinking about having a glass
|
| 16 |
+
of wine :wine_glass: with your friends :man-man-girl-girl: and you have to buy a bottle.
|
| 17 |
+
You know you like `bold`, `woody` wine but are unsure which one to choose.
|
| 18 |
+
You wonder whether there are some words that describe each type of wine.
|
| 19 |
+
Since you are a researcher :female-scientist: :male-scientist:, you decide to approach
|
| 20 |
+
the problem scientifically :microscope:. That's where Wordify comes to the rescue!
|
| 21 |
+
"""
|
| 22 |
+
)
|
| 23 |
+
st.markdown("")
|
| 24 |
+
st.markdown("")
|
| 25 |
+
st.header("Steps")
|
| 26 |
st.subheader("Step 1 - Prepare your data")
|
| 27 |
st.markdown(
|
| 28 |
"""
|
src/pages/home.py
CHANGED
|
@@ -7,7 +7,6 @@ from src.utils import (
|
|
| 7 |
plot_labels_prop,
|
| 8 |
plot_nchars,
|
| 9 |
plot_score,
|
| 10 |
-
get_logo,
|
| 11 |
read_file,
|
| 12 |
)
|
| 13 |
import streamlit as st
|
|
@@ -15,6 +14,22 @@ import streamlit as st
|
|
| 15 |
|
| 16 |
def write(session, uploaded_file):
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
if uploaded_file:
|
| 19 |
|
| 20 |
# 1. READ FILE
|
|
@@ -41,7 +56,8 @@ def write(session, uploaded_file):
|
|
| 41 |
st.markdown("Select the column containing the label")
|
| 42 |
|
| 43 |
if label_column:
|
| 44 |
-
|
|
|
|
| 45 |
|
| 46 |
with col3:
|
| 47 |
text_column = st.selectbox("Select text column name", cols_options, index=0)
|
|
@@ -123,11 +139,13 @@ def write(session, uploaded_file):
|
|
| 123 |
st.warning("Please select `label` and `text` columns")
|
| 124 |
|
| 125 |
elif run_button and (label_column and text_column) and not session.process:
|
| 126 |
-
# data = data.head()
|
| 127 |
-
data[f"preprocessed_{text_column}"] = preprocessor.fit_transform(data[text_column]).values
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
st.success("Wordified!")
|
| 132 |
|
| 133 |
# session.posdf, session.negdf = process(data, text_column, label_column)
|
|
|
|
| 7 |
plot_labels_prop,
|
| 8 |
plot_nchars,
|
| 9 |
plot_score,
|
|
|
|
| 10 |
read_file,
|
| 11 |
)
|
| 12 |
import streamlit as st
|
|
|
|
| 14 |
|
| 15 |
def write(session, uploaded_file):
|
| 16 |
|
| 17 |
+
st.markdown(
|
| 18 |
+
"""
|
| 19 |
+
Hi! Welcome to __Wordify__. Start by uploading a file - CSV, XLSX (avoid Strict Open XML Spreadsheet format [here](https://stackoverflow.com/questions/62800822/openpyxl-cannot-read-strict-open-xml-spreadsheet-format-userwarning-file-conta)),
|
| 20 |
+
or PARQUET are currently supported.
|
| 21 |
+
|
| 22 |
+
Once you have uploaded the file, __Wordify__ will show an interactive UI through which
|
| 23 |
+
you'll be able to interactively decide the text preprocessing steps, their order, and
|
| 24 |
+
proceed to Wordify your text.
|
| 25 |
+
|
| 26 |
+
If you're ready, let's jump in:
|
| 27 |
+
|
| 28 |
+
:point_left: upload a file via the upload widget in the sidebar!
|
| 29 |
+
|
| 30 |
+
NOTE: whenever you want to reset everything, simply refresh the page
|
| 31 |
+
"""
|
| 32 |
+
)
|
| 33 |
if uploaded_file:
|
| 34 |
|
| 35 |
# 1. READ FILE
|
|
|
|
| 56 |
st.markdown("Select the column containing the label")
|
| 57 |
|
| 58 |
if label_column:
|
| 59 |
+
plot = plot_labels_prop(data, label_column)
|
| 60 |
+
if plot: st.altair_chart(plot, use_container_width=True)
|
| 61 |
|
| 62 |
with col3:
|
| 63 |
text_column = st.selectbox("Select text column name", cols_options, index=0)
|
|
|
|
| 139 |
st.warning("Please select `label` and `text` columns")
|
| 140 |
|
| 141 |
elif run_button and (label_column and text_column) and not session.process:
|
|
|
|
|
|
|
| 142 |
|
| 143 |
+
with st.spinner("Process started"):
|
| 144 |
+
# data = data.head()
|
| 145 |
+
data[f"preprocessed_{text_column}"] = preprocessor.fit_transform(data[text_column]).values
|
| 146 |
+
|
| 147 |
+
inputs = encode(data[f"preprocessed_{text_column}"], data[label_column])
|
| 148 |
+
session.posdf, session.negdf = wordifier(**inputs)
|
| 149 |
st.success("Wordified!")
|
| 150 |
|
| 151 |
# session.posdf, session.negdf = process(data, text_column, label_column)
|