Spaces:
Build error
Build error
Pietro Lesci
commited on
Commit
·
ca663e1
1
Parent(s):
8400e75
improve UI
Browse files- app.py +13 -5
- src/components.py +92 -6
- src/utils.py +17 -4
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
|
| 3 |
-
from src.components import faq, footer, form, presentation
|
| 4 |
from src.utils import convert_df, get_logo, read_file
|
| 5 |
|
| 6 |
# app configs
|
|
@@ -41,9 +41,18 @@ if not uploaded_fl:
|
|
| 41 |
faq()
|
| 42 |
else:
|
| 43 |
df = read_file(uploaded_fl)
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
st.download_button(
|
| 48 |
label="Download data as CSV",
|
| 49 |
data=payload,
|
|
@@ -51,6 +60,5 @@ else:
|
|
| 51 |
mime="text/csv",
|
| 52 |
)
|
| 53 |
|
| 54 |
-
|
| 55 |
# footer
|
| 56 |
footer()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
|
| 3 |
+
from src.components import faq, footer, form, presentation, analysis
|
| 4 |
from src.utils import convert_df, get_logo, read_file
|
| 5 |
|
| 6 |
# app configs
|
|
|
|
| 41 |
faq()
|
| 42 |
else:
|
| 43 |
df = read_file(uploaded_fl)
|
| 44 |
+
outputs = form(df)
|
| 45 |
+
|
| 46 |
+
# change or create session state
|
| 47 |
+
if outputs is not None or "outputs" not in st.session_state:
|
| 48 |
+
st.session_state["outputs"] = outputs
|
| 49 |
+
|
| 50 |
+
# when procedure is performed
|
| 51 |
+
if st.session_state["outputs"] is not None:
|
| 52 |
+
|
| 53 |
+
df = analysis(st.session_state["outputs"])
|
| 54 |
+
|
| 55 |
+
payload = convert_df(df)
|
| 56 |
st.download_button(
|
| 57 |
label="Download data as CSV",
|
| 58 |
data=payload,
|
|
|
|
| 60 |
mime="text/csv",
|
| 61 |
)
|
| 62 |
|
|
|
|
| 63 |
# footer
|
| 64 |
footer()
|
src/components.py
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
| 2 |
|
| 3 |
from src.configs import Languages, PreprocessingConfigs, SupportedFiles
|
| 4 |
from src.preprocessing import PreprocessingPipeline
|
|
@@ -7,6 +9,7 @@ from src.utils import get_col_indices
|
|
| 7 |
|
| 8 |
|
| 9 |
def form(df):
|
|
|
|
| 10 |
with st.form("Wordify form"):
|
| 11 |
col1, col2, col3 = st.columns(3)
|
| 12 |
cols = [""] + df.columns.tolist()
|
|
@@ -43,12 +46,16 @@ def form(df):
|
|
| 43 |
pre_steps = st.multiselect(
|
| 44 |
"Select pre-lemmatization processing steps (ordered)",
|
| 45 |
options=steps_options,
|
| 46 |
-
default=[
|
|
|
|
|
|
|
| 47 |
format_func=lambda x: x.replace("_", " ").title(),
|
| 48 |
help="Select the processing steps to apply before the text is lemmatized",
|
| 49 |
)
|
| 50 |
|
| 51 |
-
lammatization_options = list(
|
|
|
|
|
|
|
| 52 |
lemmatization_step = st.selectbox(
|
| 53 |
"Select lemmatization",
|
| 54 |
options=lammatization_options,
|
|
@@ -59,7 +66,10 @@ def form(df):
|
|
| 59 |
post_steps = st.multiselect(
|
| 60 |
"Select post-lemmatization processing steps (ordered)",
|
| 61 |
options=steps_options,
|
| 62 |
-
default=[
|
|
|
|
|
|
|
|
|
|
| 63 |
format_func=lambda x: x.replace("_", " ").title(),
|
| 64 |
help="Select the processing steps to apply after the text is lemmatized",
|
| 65 |
)
|
|
@@ -68,12 +78,21 @@ def form(df):
|
|
| 68 |
submitted = st.form_submit_button("Submit")
|
| 69 |
if submitted:
|
| 70 |
|
|
|
|
|
|
|
| 71 |
# preprocess
|
| 72 |
if not disable_preprocessing:
|
| 73 |
with st.spinner("Step 1/4: Preprocessing text"):
|
| 74 |
-
pipe = PreprocessingPipeline(
|
|
|
|
|
|
|
| 75 |
df = pipe.vaex_process(df, text_column)
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
# prepare input
|
| 78 |
with st.spinner("Step 2/4: Preparing inputs"):
|
| 79 |
input_dict = input_transform(df[text_column], df[label_column])
|
|
@@ -86,7 +105,19 @@ def form(df):
|
|
| 86 |
with st.spinner("Step 4/4: Preparing outputs"):
|
| 87 |
new_df = output_transform(pos, neg)
|
| 88 |
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
|
| 92 |
def faq():
|
|
@@ -274,3 +305,58 @@ def contacts():
|
|
| 274 |
|
| 275 |
<iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d2798.949796165441!2d9.185730115812493!3d45.450667779100726!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x4786c405ae6543c9%3A0xf2bb2313b36af88c!2sVia%20Guglielmo%20R%C3%B6ntgen%2C%201%2C%2020136%20Milano%20MI!5e0!3m2!1sit!2sit!4v1569325279433!5m2!1sit!2sit" frameborder="0" style="border:0; width: 100%; height: 312px;" allowfullscreen></iframe>
|
| 276 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import time
|
| 3 |
+
import pandas as pd
|
| 4 |
|
| 5 |
from src.configs import Languages, PreprocessingConfigs, SupportedFiles
|
| 6 |
from src.preprocessing import PreprocessingPipeline
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
def form(df):
|
| 12 |
+
st.subheader("Parameters")
|
| 13 |
with st.form("Wordify form"):
|
| 14 |
col1, col2, col3 = st.columns(3)
|
| 15 |
cols = [""] + df.columns.tolist()
|
|
|
|
| 46 |
pre_steps = st.multiselect(
|
| 47 |
"Select pre-lemmatization processing steps (ordered)",
|
| 48 |
options=steps_options,
|
| 49 |
+
default=[
|
| 50 |
+
steps_options[i] for i in PreprocessingConfigs.DEFAULT_PRE.value
|
| 51 |
+
],
|
| 52 |
format_func=lambda x: x.replace("_", " ").title(),
|
| 53 |
help="Select the processing steps to apply before the text is lemmatized",
|
| 54 |
)
|
| 55 |
|
| 56 |
+
lammatization_options = list(
|
| 57 |
+
PreprocessingPipeline.lemmatization_component().keys()
|
| 58 |
+
)
|
| 59 |
lemmatization_step = st.selectbox(
|
| 60 |
"Select lemmatization",
|
| 61 |
options=lammatization_options,
|
|
|
|
| 66 |
post_steps = st.multiselect(
|
| 67 |
"Select post-lemmatization processing steps (ordered)",
|
| 68 |
options=steps_options,
|
| 69 |
+
default=[
|
| 70 |
+
steps_options[i]
|
| 71 |
+
for i in PreprocessingConfigs.DEFAULT_POST.value
|
| 72 |
+
],
|
| 73 |
format_func=lambda x: x.replace("_", " ").title(),
|
| 74 |
help="Select the processing steps to apply after the text is lemmatized",
|
| 75 |
)
|
|
|
|
| 78 |
submitted = st.form_submit_button("Submit")
|
| 79 |
if submitted:
|
| 80 |
|
| 81 |
+
start_time = time.time()
|
| 82 |
+
|
| 83 |
# preprocess
|
| 84 |
if not disable_preprocessing:
|
| 85 |
with st.spinner("Step 1/4: Preprocessing text"):
|
| 86 |
+
pipe = PreprocessingPipeline(
|
| 87 |
+
language, pre_steps, lemmatization_step, post_steps
|
| 88 |
+
)
|
| 89 |
df = pipe.vaex_process(df, text_column)
|
| 90 |
+
else:
|
| 91 |
+
with st.spinner(
|
| 92 |
+
"Step 1/4: Preprocessing has been disabled - doing nothing"
|
| 93 |
+
):
|
| 94 |
+
time.sleep(1.5)
|
| 95 |
+
|
| 96 |
# prepare input
|
| 97 |
with st.spinner("Step 2/4: Preparing inputs"):
|
| 98 |
input_dict = input_transform(df[text_column], df[label_column])
|
|
|
|
| 105 |
with st.spinner("Step 4/4: Preparing outputs"):
|
| 106 |
new_df = output_transform(pos, neg)
|
| 107 |
|
| 108 |
+
# reset the index for the UI
|
| 109 |
+
new_df = new_df.reset_index(drop=True)
|
| 110 |
+
|
| 111 |
+
end_time = time.time()
|
| 112 |
+
meta_data = {
|
| 113 |
+
"vocab_size": input_dict["X"].shape[1],
|
| 114 |
+
"n_instances": input_dict["X"].shape[0],
|
| 115 |
+
"vocabulary": pd.DataFrame({"Vocabulary": input_dict["X_names"]}),
|
| 116 |
+
"labels": pd.DataFrame({"Labels": input_dict["y_names"]}),
|
| 117 |
+
"time": round(end_time - start_time),
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
return new_df, meta_data
|
| 121 |
|
| 122 |
|
| 123 |
def faq():
|
|
|
|
| 305 |
|
| 306 |
<iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d2798.949796165441!2d9.185730115812493!3d45.450667779100726!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x4786c405ae6543c9%3A0xf2bb2313b36af88c!2sVia%20Guglielmo%20R%C3%B6ntgen%2C%201%2C%2020136%20Milano%20MI!5e0!3m2!1sit!2sit!4v1569325279433!5m2!1sit!2sit" frameborder="0" style="border:0; width: 100%; height: 312px;" allowfullscreen></iframe>
|
| 307 |
"""
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
def analysis(outputs):
|
| 311 |
+
|
| 312 |
+
df, meta_data = outputs
|
| 313 |
+
|
| 314 |
+
st.subheader("Results")
|
| 315 |
+
st.markdown(
|
| 316 |
+
"""
|
| 317 |
+
Wordify successfully run and you can now look at the results before downloading the wordified file.
|
| 318 |
+
In particular, you can use the slider to filter only those words that have a `Score` above (>=) a certain threshold.
|
| 319 |
+
For meaningful results, we suggest keeping the threshold to 0.25.
|
| 320 |
+
"""
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
col1, col2 = st.columns([2, 1])
|
| 324 |
+
|
| 325 |
+
with col1:
|
| 326 |
+
threshold = st.slider(
|
| 327 |
+
"Select threshold",
|
| 328 |
+
min_value=0.0,
|
| 329 |
+
max_value=1.0,
|
| 330 |
+
step=0.01,
|
| 331 |
+
value=0.25,
|
| 332 |
+
help="To return everything, select 0.",
|
| 333 |
+
)
|
| 334 |
+
subset_df = df.loc[df["Score"] >= threshold]
|
| 335 |
+
st.write(subset_df)
|
| 336 |
+
|
| 337 |
+
with col2:
|
| 338 |
+
st.markdown("**Some info about your data**")
|
| 339 |
+
st.markdown(
|
| 340 |
+
f"""
|
| 341 |
+
Your input file contained {meta_data["n_instances"]:,} rows and
|
| 342 |
+
Wordify took {meta_data["time"]:,} seconds to run.
|
| 343 |
+
|
| 344 |
+
The total number of n-grams Wordify considered is {meta_data["vocab_size"]:,}.
|
| 345 |
+
With the current selected threshold on the `Score` (>={threshold}) the output contains {subset_df["Word"].nunique():,}
|
| 346 |
+
unique n-grams.
|
| 347 |
+
"""
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
with st.expander("Vocabulary"):
|
| 351 |
+
st.markdown(
|
| 352 |
+
"The table below shows all candidate n-grams that Wordify considered"
|
| 353 |
+
)
|
| 354 |
+
st.write(meta_data["vocabulary"])
|
| 355 |
+
|
| 356 |
+
with st.expander("Labels"):
|
| 357 |
+
st.markdown(
|
| 358 |
+
"The table below summarizes the labels that your file contained"
|
| 359 |
+
)
|
| 360 |
+
st.write(meta_data["labels"])
|
| 361 |
+
|
| 362 |
+
return subset_df
|
src/utils.py
CHANGED
|
@@ -68,7 +68,12 @@ def plot_labels_prop(data: pd.DataFrame, label_column: str):
|
|
| 68 |
|
| 69 |
return
|
| 70 |
|
| 71 |
-
source =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
source["Props"] = source["Counts"] / source["Counts"].sum()
|
| 73 |
source["Proportions"] = (source["Props"].round(3) * 100).map("{:,.2f}".format) + "%"
|
| 74 |
|
|
@@ -81,7 +86,9 @@ def plot_labels_prop(data: pd.DataFrame, label_column: str):
|
|
| 81 |
)
|
| 82 |
)
|
| 83 |
|
| 84 |
-
text = bars.mark_text(align="center", baseline="middle", dy=15).encode(
|
|
|
|
|
|
|
| 85 |
|
| 86 |
return (bars + text).properties(height=300)
|
| 87 |
|
|
@@ -93,7 +100,9 @@ def plot_nchars(data: pd.DataFrame, text_column: str):
|
|
| 93 |
alt.Chart(source)
|
| 94 |
.mark_bar()
|
| 95 |
.encode(
|
| 96 |
-
alt.X(
|
|
|
|
|
|
|
| 97 |
alt.Y("count()", axis=alt.Axis(title="")),
|
| 98 |
)
|
| 99 |
)
|
|
@@ -103,7 +112,11 @@ def plot_nchars(data: pd.DataFrame, text_column: str):
|
|
| 103 |
|
| 104 |
def plot_score(data: pd.DataFrame, label_col: str, label: str):
|
| 105 |
|
| 106 |
-
source =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
plot = (
|
| 109 |
alt.Chart(source)
|
|
|
|
| 68 |
|
| 69 |
return
|
| 70 |
|
| 71 |
+
source = (
|
| 72 |
+
data[label_column]
|
| 73 |
+
.value_counts()
|
| 74 |
+
.reset_index()
|
| 75 |
+
.rename(columns={"index": "Labels", label_column: "Counts"})
|
| 76 |
+
)
|
| 77 |
source["Props"] = source["Counts"] / source["Counts"].sum()
|
| 78 |
source["Proportions"] = (source["Props"].round(3) * 100).map("{:,.2f}".format) + "%"
|
| 79 |
|
|
|
|
| 86 |
)
|
| 87 |
)
|
| 88 |
|
| 89 |
+
text = bars.mark_text(align="center", baseline="middle", dy=15).encode(
|
| 90 |
+
text="Proportions:O"
|
| 91 |
+
)
|
| 92 |
|
| 93 |
return (bars + text).properties(height=300)
|
| 94 |
|
|
|
|
| 100 |
alt.Chart(source)
|
| 101 |
.mark_bar()
|
| 102 |
.encode(
|
| 103 |
+
alt.X(
|
| 104 |
+
f"{text_column}:Q", bin=True, axis=alt.Axis(title="# chars per text")
|
| 105 |
+
),
|
| 106 |
alt.Y("count()", axis=alt.Axis(title="")),
|
| 107 |
)
|
| 108 |
)
|
|
|
|
| 112 |
|
| 113 |
def plot_score(data: pd.DataFrame, label_col: str, label: str):
|
| 114 |
|
| 115 |
+
source = (
|
| 116 |
+
data.loc[data[label_col] == label]
|
| 117 |
+
.sort_values("score", ascending=False)
|
| 118 |
+
.head(100)
|
| 119 |
+
)
|
| 120 |
|
| 121 |
plot = (
|
| 122 |
alt.Chart(source)
|