Spaces:
Running
Running
| import os | |
| from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter | |
| from collections import namedtuple | |
| import pathlib | |
| import numpy as np | |
| import pandas as pd | |
| def pysr(X=None, y=None, weights=None, | |
| procs=4, | |
| niterations=100, | |
| ncyclesperiteration=300, | |
| binary_operators=["plus", "mult"], | |
| unary_operators=["cos", "exp", "sin"], | |
| alpha=0.1, | |
| annealing=True, | |
| fractionReplaced=0.10, | |
| fractionReplacedHof=0.10, | |
| npop=1000, | |
| parsimony=1e-4, | |
| migration=True, | |
| hofMigration=True, | |
| shouldOptimizeConstants=True, | |
| topn=10, | |
| weightAddNode=1, | |
| weightInsertNode=3, | |
| weightDeleteNode=3, | |
| weightDoNothing=1, | |
| weightMutateConstant=10, | |
| weightMutateOperator=1, | |
| weightRandomize=1, | |
| weightSimplify=0.01, | |
| perturbationFactor=1.0, | |
| nrestarts=3, | |
| timeout=None, | |
| equation_file='hall_of_fame.csv', | |
| test='simple1', | |
| verbosity=1e9, | |
| maxsize=20, | |
| threads=None, #deprecated | |
| ): | |
| """Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i. | |
| Note: most default parameters have been tuned over several example | |
| equations, but you should adjust `threads`, `niterations`, | |
| `binary_operators`, `unary_operators` to your requirements. | |
| :param X: np.ndarray, 2D array. Rows are examples, columns are features. | |
| :param y: np.ndarray, 1D array. Rows are examples. | |
| :param procs: int, Number of processes (=number of populations running). | |
| :param niterations: int, Number of iterations of the algorithm to run. The best | |
| equations are printed, and migrate between populations, at the | |
| end of each. | |
| :param ncyclesperiteration: int, Number of total mutations to run, per 10 | |
| samples of the population, per iteration. | |
| :param binary_operators: list, List of strings giving the binary operators | |
| in Julia's Base, or in `operator.jl`. | |
| :param unary_operators: list, Same but for operators taking a single `Float32`. | |
| :param alpha: float, Initial temperature. | |
| :param annealing: bool, Whether to use annealing. You should (and it is default). | |
| :param fractionReplaced: float, How much of population to replace with migrating | |
| equations from other populations. | |
| :param fractionReplacedHof: float, How much of population to replace with migrating | |
| equations from hall of fame. | |
| :param npop: int, Number of individuals in each population | |
| :param parsimony: float, Multiplicative factor for how much to punish complexity. | |
| :param migration: bool, Whether to migrate. | |
| :param hofMigration: bool, Whether to have the hall of fame migrate. | |
| :param shouldOptimizeConstants: bool, Whether to numerically optimize | |
| constants (Nelder-Mead/Newton) at the end of each iteration. | |
| :param topn: int, How many top individuals migrate from each population. | |
| :param nrestarts: int, Number of times to restart the constant optimizer | |
| :param perturbationFactor: float, Constants are perturbed by a max | |
| factor of (perturbationFactor*T + 1). Either multiplied by this | |
| or divided by this. | |
| :param weightAddNode: float, Relative likelihood for mutation to add a node | |
| :param weightInsertNode: float, Relative likelihood for mutation to insert a node | |
| :param weightDeleteNode: float, Relative likelihood for mutation to delete a node | |
| :param weightDoNothing: float, Relative likelihood for mutation to leave the individual | |
| :param weightMutateConstant: float, Relative likelihood for mutation to change | |
| the constant slightly in a random direction. | |
| :param weightMutateOperator: float, Relative likelihood for mutation to swap | |
| an operator. | |
| :param weightRandomize: float, Relative likelihood for mutation to completely | |
| delete and then randomly generate the equation | |
| :param weightSimplify: float, Relative likelihood for mutation to simplify | |
| constant parts by evaluation | |
| :param timeout: float, Time in seconds to timeout search | |
| :param equation_file: str, Where to save the files (.csv separated by |) | |
| :param test: str, What test to run, if X,y not passed. | |
| :param maxsize: int, Max size of an equation. | |
| :returns: pd.DataFrame, Results dataframe, giving complexity, MSE, and equations | |
| (as strings). | |
| """ | |
| if threads is not None: | |
| raise ValueError("The threads kwarg is deprecated. Use procs.") | |
| # Check for potential errors before they happen | |
| assert len(binary_operators) > 0 | |
| assert len(unary_operators) > 0 | |
| assert len(X.shape) == 2 | |
| assert len(y.shape) == 1 | |
| assert X.shape[0] == y.shape[0] | |
| if weights is not None: | |
| assert len(weights.shape) == 1 | |
| assert X.shape[0] == weights.shape[0] | |
| rand_string = f'{"".join([str(np.random.rand())[2] for i in range(20)])}' | |
| if isinstance(binary_operators, str): binary_operators = [binary_operators] | |
| if isinstance(unary_operators, str): unary_operators = [unary_operators] | |
| if X is None: | |
| if test == 'simple1': | |
| eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5" | |
| elif test == 'simple2': | |
| eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/(np.abs(X[:, 0])+1)" | |
| elif test == 'simple3': | |
| eval_str = "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)" | |
| elif test == 'simple4': | |
| eval_str = "1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4" | |
| elif test == 'simple5': | |
| eval_str = "(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)" | |
| X = np.random.randn(100, 5)*3 | |
| y = eval(eval_str) | |
| print("Running on", eval_str) | |
| pkg_directory = '/'.join(__file__.split('/')[:-2] + ['julia']) | |
| def_hyperparams = "" | |
| # Add pre-defined functions to Julia | |
| for op_list in [binary_operators, unary_operators]: | |
| for i in range(len(op_list)): | |
| op = op_list[i] | |
| if '(' not in op: | |
| continue | |
| def_hyperparams += op + "\n" | |
| # Cut off from the first non-alphanumeric char: | |
| first_non_char = [ | |
| j for j in range(len(op)) | |
| if not (op[j].isalpha() or op[j].isdigit())][0] | |
| function_name = op[:first_non_char] | |
| op_list[i] = function_name | |
| def_hyperparams += f"""include("{pkg_directory}/operators.jl") | |
| const binops = {'[' + ', '.join(binary_operators) + ']'} | |
| const unaops = {'[' + ', '.join(unary_operators) + ']'} | |
| const ns=10; | |
| const parsimony = {parsimony:f}f0 | |
| const alpha = {alpha:f}f0 | |
| const maxsize = {maxsize:d} | |
| const migration = {'true' if migration else 'false'} | |
| const hofMigration = {'true' if hofMigration else 'false'} | |
| const fractionReplacedHof = {fractionReplacedHof}f0 | |
| const shouldOptimizeConstants = {'true' if shouldOptimizeConstants else 'false'} | |
| const hofFile = "{equation_file}" | |
| const nprocs = {procs:d} | |
| const nrestarts = {nrestarts:d} | |
| const perturbationFactor = {perturbationFactor:f}f0 | |
| const annealing = {"true" if annealing else "false"} | |
| const weighted = {"true" if weights is not None else "false"} | |
| const mutationWeights = [ | |
| {weightMutateConstant:f}, | |
| {weightMutateOperator:f}, | |
| {weightAddNode:f}, | |
| {weightInsertNode:f}, | |
| {weightDeleteNode:f}, | |
| {weightSimplify:f}, | |
| {weightRandomize:f}, | |
| {weightDoNothing:f} | |
| ] | |
| """ | |
| if X.shape[1] == 1: | |
| X_str = 'transpose([' + str(X.tolist()).replace(']', '').replace(',', '').replace('[', '') + '])' | |
| else: | |
| X_str = str(X.tolist()).replace('],', '];').replace(',', '') | |
| y_str = str(y.tolist()) | |
| def_datasets = """const X = convert(Array{Float32, 2}, """f"{X_str})"""" | |
| const y = convert(Array{Float32, 1}, """f"{y_str})" | |
| if weights is not None: | |
| weight_str = str(weights.tolist()) | |
| def_datasets += """ | |
| const weights = convert(Array{Float32, 1}, """f"{weight_str})" | |
| with open(f'/tmp/.hyperparams_{rand_string}.jl', 'w') as f: | |
| print(def_hyperparams, file=f) | |
| with open(f'/tmp/.dataset_{rand_string}.jl', 'w') as f: | |
| print(def_datasets, file=f) | |
| with open(f'/tmp/.runfile_{rand_string}.jl', 'w') as f: | |
| print(f'@everywhere include("/tmp/.hyperparams_{rand_string}.jl")', file=f) | |
| print(f'@everywhere include("/tmp/.dataset_{rand_string}.jl")', file=f) | |
| print(f'@everywhere include("{pkg_directory}/sr.jl")', file=f) | |
| print(f'fullRun({niterations:d}, npop={npop:d}, ncyclesperiteration={ncyclesperiteration:d}, fractionReplaced={fractionReplaced:f}f0, verbosity=round(Int32, {verbosity:f}), topn={topn:d})', file=f) | |
| print(f'rmprocs(nprocs)', file=f) | |
| command = [ | |
| 'julia -O3', | |
| f'-p {procs}', | |
| f'/tmp/.runfile_{rand_string}.jl', | |
| ] | |
| if timeout is not None: | |
| command = [f'timeout {timeout}'] + command | |
| cur_cmd = ' '.join(command) | |
| print("Running on", cur_cmd) | |
| os.system(cur_cmd) | |
| try: | |
| output = pd.read_csv(equation_file, sep="|") | |
| except FileNotFoundError: | |
| print("Couldn't find equation file!") | |
| output = pd.DataFrame() | |
| return output | |